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Abstract

Abstract

In his Bachelor thesis Stefan Bruhns has created a new network type called “mo-
dulated spiking neural network”. This thesis expands his work by analysing the
performance of the new network on different tasks and comparing them to different
other network types.

Zusammenfassung

In seiner Bachelorarbeit hat Stefan Bruhms einen neuen Typ neuronaler Netzerke
namens “modulated spiking neural network” geschaffen. Diese Arbeit liefert eine
vertiefende Analyse des neuen Netzwerkes, bei welcher das Netzwerk verschiedene
Aufgaben lösen muss. Zus¨tzlich wird die Leistung der modulated spiking neural
network mit der anderer Netzwerktypen verglichen.
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Chapter 1

Introduction

Neural Networks are widely used for a variety of tasks [WRL94] including tasks
from clinical medicine [Bax95]. These networks are often adjusted through the
process of evolution [SWE92]. Therefore it is necessary for a neural network to
perform well in terms of evolvability.

In an attempt to find neural networks that perform better for certain tasks, or
have improved characteristics (e.g. higher memorisation capabilities), new kinds
of networks are constantly developed. Two examples are:

• GasNets [HSJO98, Hus98]. These networks are inspired by the discovery of
freely floating nitric oxide in the brain. The neurons in this kind of networks
have the ability to release different gases which modulate the behaviour of
nearby neurons.

• Spiking neural networks [Maa97, BRC+07]. These kind of networks try to
imitate the natural spiking behaviour of neurons instead of using an artificial
activation function.

In his bachelor thesis Stefan Bruhns [Bru15] has combined these two network
types to create a new type of neural network called “modulated spiking neural
network”. He has also performed some testing on the performance of this network
type in terms of evolvability which has shown some promising results. His analysis
was done on a single task though, so it can not be generalised in terms of complexity
and type of task.

In order to get a better understanding of how well these modulated spiking
neural work in different conditions and to get a better understanding of the cha-
racteristics of this new network type, I did some more empirical study on different
simulations with different attributes (e.g. some where pattern generators or mem-
ory are useful and some where they are not) in my bachelor thesis. This way I
hope to find out more about the advantages and disadvantages of the modulated
spiking neural network architecture. One focus will lie on the usage of gas in the
networks because the usage of gas has already shown a great impact for GasNets
[Hus98]. The assumption is that the release of gas in combination with the spiking
neurons will lead to a powerful network architecture.
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Chapter 2

Theoretical background on used
neural network models

The development of artificial neural networks (ANN) is inspired by the computa-
tional power of the human brain. The human brain is a complex biological system
which can process information nonlinear and parallel [Kan11]. To build systems
with corresponding features, multiple models have been developed which share a
common structure:

Artificial neural networks consist of multiple processing units [KvdS96] (also
called nodes or neurons [Kan11]). These processing units (See figure 2.1) consist
of multiple input connections. The input value of this connection (x1, x2, ..., xm)
is multiplied by a weight specific to the connection (wk1, wk2, ..., wkm). The sum of
these connections (net) is then processed by an activation function (f(net)). The
output of this activation function is the output of the neuron. In some models an
additional connection with a constant value is used to modify the default behaviour
of the neurons. This constant value is called bias (bk).

There are multiple functions which are commonly used as activation functions.

Figure 2.1: Simple model of an artificial neuron [Kan11]
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Chapter 2. Theoretical background on used neural network models

Figure 2.2: Schematic draft of a multi-layer feed-forward neural network with 2
hidden layers [Kan11]

These include the log-sigmoid (2.1) and hyperbolic tangent sigmoid (2.2) [Kan11].

y =
1

1 + e−net
(2.1)

y =
enet − e−net

enet + e−net
(2.2)

The different network types used in this study can be distinguished by the way
the neurons are connected and the specific way the neurons work internally.

2.1 Multi-layer feed-forward neural network

A feed-forward neural network (FFN) is a neural network where no feedback-
connections are present, which means that the output of a neuron will be neither
directly nor indirectly the input of the same neuron [KvdS96]. The network used
in this thesis can be classified as a multi-layer feed-forward neural network (also
called “multilayer perceptron”), which means that the neurons are clustered in
layers. The input of each layer consists of the output of the prior layer (with the
exception of the first layer whose input is from external sources). The output of
the last layer is the output of the whole neural network. The first layer is called
“input layer”, the last layer is defined as “output layer”. All other layers are called
“hidden layer” (see figure 2.2).

Multi-layer feed-forward neural networks (together with a learning method
called “backpropagation” as the learning algorithm) are probably the most com-
monly used neural network in the industry [Kan11]

4



2.2. Continuous-time recurrent neural network

2.2 Continuous-time recurrent neural network

A standard continuous-time recurrent neural network (CTRNN) [Ran95] is a neu-
ral network where all neurons have a connection to each other as well as a recurrent
connection. The neurons in this type of network have an internal value y which is
changing over time as well as a special output function depending on the internal
value and the bias of the neuron. The output oti and the internal value yti at time
t are defined as following:

oti = σ(yti + bi) (2.3)

yti = yt−1
i +

∆t

τi

(
−yt−1

i + I ti +
N∑
j=i

(wji · ot−1
j )

)
(2.4)

where τ > 0 is the time constant of the neuron, wji the weight of the connection
from j to i, bi the bias, I ti the input at time t and σ the activation function (which
is often the sigmoid function as defined in (2.1)).

2.3 GasNet

The development of GasNets was inspired by the discovery of freely floating nitric
oxide in the human brain [HSJO98]. The neurons in this type of network are
arranged on a two-dimensional plane. Each neuron has the ability to release one
of two different simulated gases (called gas1 and gas2) which can influence the
activation function (2.5) of other neurons by changing the parameter K.

yti = tanh

[
Kt

i

(
I ti +

N∑
j=1

(wji · yt−1
j )

)
+ bi

]
(2.5)

where tanh is the hyperbolic tangent function (2.2), I ti the input at time t, wji the
weight of the connection from j to i and bi the bias. Kt

i is the transfer function
parameter which can be increased through gas1 and decreased through gas2 as
following:

Kt
i = P [Dt

i ] (2.6)

P = {−4.0,−2.0,−1.0,−0.5,−0.25,−0.125, 0.0, 0.125, 0.25, 0.5, 1.0, 2.0, 4.0}
(2.7)

Dt
i = f

(
D0

i + Ct
1 · (13−D0

i )− Ct
2 ·D0

i

)
(2.8)

f(x) =


0 x ≤ 0

bxc 0 < x < N

N else

(2.9)
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Chapter 2. Theoretical background on used neural network models

where D0
i is the default index specific to a neuron, Ct

1 is the concentration of gas1
at time t and Ct

1 is the concentration of gas2 at time t. Both are calculated through
(2.10) [HSJO98, Hus98].

C(d, t) =

{
C0 · e

−2d
r · Tt(t) d < r

0 else
(2.10)

Tt(t) =

{
H(Tt−1(t) + 1

k
) emitting

H(Tt−1(t)− 1
k
) emitting

(2.11)

H(x) =


0 x ≤ 0

x 0 < x < 1

1 else

(2.12)

where C0 is a global constant (set to 1 for this study). Several recent publications
used different functions to calculate the gas concentration [SHPO02, Smi02, MP06],
see appendix A for more information.

A gas is released when either the electric charge exceeds a threshold (0.5), gas
1 concentration exceeds a threshold (0.1) or gas 2 exceeds a threshold (0.1). The
type of gas emitted as well as the emitting condition is determined genetically.

The outgoing connections of a neuron are defined through two cones (also called
segments): One positive segment and one negative segments. Each neuron in a
positive section has a excitatory connection (with the weight of 1) from the parent
neuron of the cone and each neuron in a negative sector a inhibitory connection
(with the weight of −1) [HSJO98, Hus98]. One example can be seen in figure 2.3.

2.4 Modulated spiking neural network

While all neurons in the prior neural network types use an artificial activation
function, spiking neurons try to emulate the electrical activity of real brain neurons.
One of this models is the Izhikevich-model [Izh03], which can be described as
following:

∆tv = 0.04v2
t + 5vt + 140− ut + I (2.13)

∆tu = a(b · v − u) (2.14)

vt+1 = vt +∆tv (2.15)

ut+1 = ut +∆tu (2.16)

where v modulates the electric charge of of the neuron and u decribes the behaviour
after a spike. The neuron resets after a spike as following:

if v ≥ 30, then

{
v ← c

u← u+ d
(2.17)

6



2.4. Modulated spiking neural network

Figure 2.3: Connection scheme in a GasNet [Hus98]

a, b, c, d are variables which describe the behaviour of the network.

In his bachelor thesis Stefan Bruhns combines this spiking neuron model with
the basic architecture of GasNets to create a new neural network type called “mod-
ulated spiking neural network” (MSNN) or “Modulated-SpikingNet” [Bru15]. The
Izhikevich-model was chosen because it can model a lot of relevant neuron be-
haviours while at the same time being reasonably efficient [Izh04]. Stefan Bruhns
has chosen the following sets for the parameters [Bru15], unfortunately he does
not give a reason why he has chosen them:

Pa = {0.0, 0.02, 0.04, 0.045, 0.0475, 0.04875, 0.05,

0.05125, 0.0525, 0.055, 0.06, 0.08, 0.1} (2.18)

Pb = {−0.2, 0.0, 0.1, 0.15, 0.175, 0.1875, 0.2,

0.2125, 0.225, 0.25, 0.3, 0.4, 0.6} (2.19)

Pc = {−80,−72,−68,−66,−65.5,−65.25,−65,

− 64.75,−64.5,−64,−62,−58,−50} (2.20)

Pd = {−2, 0, 1, 1.5, 1.75, 1.875, 2,

2.125, 2.25, 2.5, 3, 4, 6} (2.21)

These variables can either be fixed for each neuron or modulated through two gases

7



Chapter 2. Theoretical background on used neural network models

like GasNets (see section 2.3). The values are modulated as following:

X t
i = Px[IndextX,i] (2.22)

IndextX,i = f
(
Index0

X + Ct
X,positiv · (13−D0

X,i)− Ct
X,negativ ·D0

X,i

)
(2.23)

f(x) =


0 x ≤ 0

bxc 0 < x < N

N else

(2.24)

where X is the variable which is modulated (a, b, c, d), Index0
X,i is the default

index of variable X specific to neuron i, Ct
X,positiv the gas which positively influences

variable X and Ct
X,negativ the gas which negatively influences variable X. Both

Ct
X,positiv and Ct

X,negativ can be calculated through (2.10). Although this function
differs from the one used by Stefan Bruhns [Bru15] it was chosen to make the
results more comparable to the GasNets. The function itself should only have
a minimal impact on the results of the modulated spiking neural networks (see
appendix A).

A neuron emits gas when either the electric charge of the neuron exceeds a
threshold (0.5) or the gas concentration of a genetic determined gas at the neuron
exceeds a threshold (0.1). The type of gas emitted is determined genetically from
a pool positive and negative gas of all modulated values.

The network calculates multiple steps internally for every simulation step (in
this work 10 internal steps per simulation step). The output of a neuron equals to
its spiking frequency over these internal steps:

oti =
N t

spikes,i

Ninternal steps

(2.25)

where oti is the output of neuron i at simulation time step t, N t
spikes,i is the number

of spikes of neuron i at simulation time step t and Ninternal steps is the number of
internal time steps per simulation time step.

The connections in this network follow the same scheme as in the GasNets (see
figure 2.3).

8



Chapter 3

Experimental setup

The following chapter describes the setup of the experiments. Each experiment
consist of a simulation with a task for which each neural network has to find the
best behaviour. This is done using a genetic algorithm.

3.1 Genetic Algorithm

Genetic algorithms are often used to get near optimal solutions for an optimisation
problem [Kan11]. A genetic algorithm works on a population of possible solutions,
where each individual has a fitness which describes how good the solution is for
the given problem. Each individual is encoded into a chromosome containing all
important information. In this study a genetic algorithm is used to optimise the
structure of the neural networks. The process of a genetic algorithm is shown in
figure 3.2, which contains the following steps [Cox05]:

1. The individuals must be encoded into a chromosome. In this study the chro-
mosome contains several genes. All genes have the same size (which depends
on the type of network that is encoded, see section 3.3) and contains positive
integers in the range [0, 2147483647] called allele (which is the positive range
of a 32-bit integer variable). This alleles can then be transformed in numbers
of different ranges as needed by the networks. The exact number of genes
in a chromosome is dependent on the type of network (see section 3.3). The
fitness function is given by the simulation.

2. The population must be initialised with individuals. For this first population
all chromosomes are created with random values.

3. Each individual has to be evaluated to determine its fitness, therefore the
chromosome is transformed into the corresponding network which is evalu-
ated through the simulation’s fitness function. For individuals which were
already present in the last generation we do not need to recalculate its fitness.

4. After the evaluation we can determine if we want to terminate the genetic
algorithm. There are a variety of termination reasons including a certain

9



Chapter 3. Experimental setup

Figure 3.1: One-point crossover [Cox05]

fitness value has been exceeded by an individual or a certain amount of
rounds has been reached.

5. Finally a new population has to be build. The steps of building the new
population are defined as following:

• Creating children: First a section of the the individuals are com-
bined to create new offspring (also called children). In this study the
whole population is divided into multiple tournament groups containing
8 individuals (the last group may be smaller when the population size
is not dividable by 8 without a remainder). In every group the best
two individuals are then combined using a one-point crossover / single-
point crossover (see figure 3.1) and the new children are added to the
tournament group.

• Mutation: To overcome local maxima it is important to add some
mutation to individuals. In this study each of the children gets mutated
where each allele can be mutated by a small chance (3%). If an allele is
mutated, its value get changed to a random number. Additionally there
are some chromosome types where the length is variable in the range [s,
4 · s], where s is the minimal amount of output neurons required by the
simulation. In this case, there is a certain chance (3%) that a gene is
deleted or a random gene is added (both can occur at the same time).

• Survivor selection: After the creation of children the population has
to be reduced to its original size. Therefore, a number of survivors
(equal to the original population size) are selected. In this study, the
best 8 individuals out of a tournament group are selected for the new
population.

The size of the population in this study is 300. The genetic algorithm runs
until 200 rounds have passed or the fitness of the best individual exceeds 0.99.

10



3.1. Genetic Algorithm

Figure 3.2: Basic process of a genetic algorithm [Cox05]
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Chapter 3. Experimental setup

Figure 3.3: Example of a normal t-maze. Grey tiles represent changeable tiles,
blue areas represent goals. The dot is the start position.

3.2 Simulations

Each simulation is a task which a neural network has to solve. All simulations
have the same basic structure: The simulation is repeated Ntrials number of times
which is specific to the type of simulation. All runs are randomised. This has the
consequence that the networks have to find a way to solve arbitrary variants of
the simulation instead of learning a fixed sequence of steps. The fitness can be
calculated as following:

fitness =
Nsuccessful

Ntrials

(3.1)

where Nsuccessful is the number of times the simulation was completed successfully.
The size of the input and the number of required output neurons is completely

dependent on the type of simulation.

3.2.1 T-Maze

The t-maze simulation used in this thesis is an abstract simulation. A robot has to
walk down a corridor consisting of tiles and at the end has to choose between two
goals. At the beginning and at the end (grey tiles in image 3.3) are two random
numbers between one and five. If both numbers are the same the robot has to go
to the goal “g1”, else the correct goal is “g2” (see image 3.3). The simulation
is considered successful if the robot chooses the correct goal in a given time limit.
Both goals are correct with a chance of 50%. This task was chosen because it is
an easy task where a neural network has to have memory to find the correct goal.

The network has five input values representing the five possible numbers. If the

12



3.2. Simulations

Figure 3.4: State machine of Reber grammar (left) and embedded Reber grammar
(right) [Fah91]

number is not null the value representing the number will be set to 1. All other
numbers are set to 0.

The task requires four output neurons, each representing one direction (left,
right, up, down). The output with the highest value will be the direction in which
the robot goes one tile, if there are multiple highest values or there is no tile in the
chosen direction the robot does not move. The simulation is repeated 250 times
(Ntrials = 250).

There are two variants of the t-maze:

• Normal t-maze: This maze contains 5 tiles with 0-values (7 in total) and
must be completed within 50 time steps. It is identical to the t-maze in figure
3.3. To solve this maze, short-term memory should be sufficient to choose
the correct goal.

• Huge t-maze: This maze contains 150 tiles with 0-values (152 in total) and
must be completed within 500 time steps. Because of the high amount of
tiles between the start and the end the network requires long-term memory
to choose the correct goal.

3.2.2 Reber grammar

The Reber grammars are a set of grammars based on a finite state machine origi-
nally developed by Reber [Reb67]. To learn the grammar, a neural network must
generalise the words in the presence of noise as well as memory for the past states
of the network [Fah91]. A special form is the “embedded Reber grammar”, where
the network has to memorise the beginning of the word in order to assign the
correct ending of the word. The used grammars can be seen in figure 3.4. In this
grammar, a word can consist of the letters BTSXEPV. The input consists of 7 values,
each representing one character, where the value for the current character is set to
1 and all other values are set to 0.

The task can be split in two parts. Each part was performed with both gram-
mars:

13



Chapter 3. Experimental setup

• Detect a word: A word which consists of the letters BTSXEPV is inputted
into the network character by character. This word is either a valid word or
a word where some letters have been replaced to get an invalid word. After
all characters have been processed the network has to output one value. If
the value exceeds a threshold (0.5) the network accepts the word, else the
network rejects it. A trial is successful if a valid word is accepted or an
invalid word is rejected. This is repeated 500 times (Ntrials = 500).

• Create a word: The beginning of a word is inputted into a neural network
(half to three quarters of a word), after this the network has to finish the
word. The network has eight output values, seven of them represent the
letters BTSXEPV and one indicates the termination of a word. The highest
value is assumed to be the output value which is then used as an input for
the next step. A word has to end with the termination output and may not
be larger then a given length (50). If the word is a valid word the trial is
successful. This is repeated 50 times (Ntrials = 50).

3.3 Networks

The following section describes the concrete specification of the networks including
the encoding of the genes (see section 3.1). Each number is transformed from the
corresponding allele (range [0, 2147483647]) to a value in the range needed by the
value. The theoretical background of the networks can be found in chapter 2.

3.3.1 Feed-forward neural network

The feed-forward neural network (FFN) used in this thesis is a multi-layer per-
ceptron (section 2.1) containing 2 hidden layer with 5 neurons each. Each neuron
(except the input neurons) has a special bias connection which has a constant in-
put of 1. The size of the input and the output layer depends on the requirements
of the simulation used. The encoding is as following:

< chromosome > := (< gene >)n

< gene > :=< weight >

• n: Number of connections.

• weight: Weight of nth connection ([−1, 1]).

3.3.2 Continuous-time recurrent neural network

The chromosome of a continuous-time recurrent neural network (CTRNN) is com-
posed as following, where a gene represents a neuron:

14



3.3. Networks

< chromosome > := (< gene >)n

< gene > :=< b >< I >< τ >< W >

• n: Number of neurons.

• b: Bias of the neuron ([−5, 5]).

• I: External input of the neuron. Either the number of the input or no input.

• τ : Time constraint of the neuron ([1, 5]).

• W : List of weights for all incoming connections (Range weight: [−5, 5]).

There are different versions tested in this thesis. The activation function can
either be the sigmoid function (2.1) or the tanh function (2.2). The size of the
network is either seven neurons large (14 in case of Reber “create a word”, section
3.2.2) or the size is changing in the process of evolution.

3.3.3 GasNet

The chromosome of a GasNet is composed as following, where a gene represents a
neuron. The same or an equal encoding with different input encoding was used by
different prior work on GasNets [HSJO98, Hus98, Bru15, Smi02]:

< chromosome >:=(< gene >)n

< gene >:= < x >< y >< Rp >< Θ1p >< Θ2p >< Rn >< Θ1n >

< Θ2n >< I >< rec >< TE >< CE >< s >< Re >

< D0 >< b >

• n: Number of neurons.

• x: Horizontal position of the neuron ([0, 1]).

• y: Vertical position of the neuron ([0, 1]).

• Rp: Radius of the positive cone ([0%, 50%] of the area).

• Θ1p: Angular extend of the positive cone ([0, 2π]).

• Θ2p: Orientation of positive cone ([0, 2π]).

• Rn: Radius of the negative cone ([0%, 50%] of the area).

• Θ1n: Angular extend of the negative cone ([0, 2π]).

• Θ2n: Orientation of negative cone ([0, 2π]).

15
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• I: External input of the neuron. Either the number of the input or no input.

• rec: Weight of recurrent connection ({0, 1,−1}).

• TE: Circumstances of gas output. (0 = no gas, 1 = activation > 0.5, 2 =
gas1 concentration > 0.1, 3 = gas2 concentration > 0.1).

• CE: Type of gas that is emitted ({No gas, gas1, gas2}).

• s: Rate of gas build up/decay ([1, 11]).

• Re: Radius of emitted gas ([10%, 60%] of the area).

• D0: Value for D0 in formula (2.8) ({1, 2, ..., 12, 13}).

• b: Bias of the neuron ([−1, 1]).

The length of the chromosome is changing in the process of evolution.

3.3.4 Modulated spiking neural network

The chromosome of a modulated spiking neural network (MSNN) is composed as
following, where a gene represents a neuron. The encoding is the same as used by
Stefan Bruhns [Bru15]:

< chromosome >:=(< gene >)n

< gene >:= < x >< y >< Rp >< Θ1p >< Θ2p >< Rn >< Θ1n >

< Θ2n >< I >< rec >< TE >< CE >< s >< Re >

< a >< b >< c >< d >

• n: Number of neurons.

• x: Horizontal position of the neuron ([0, 1]).

• y: Vertical position of the neuron ([0, 1]).

• Rp: Radius of the positive cone ([0%, 50%] of the area).

• Θ1p: Angular extend of the positive cone ([0, 2π]).

• Θ2p: Orientation of positive cone ([0, 2π]).

• Rn: Radius of the negative cone ([0%, 50%] of the area).

• Θ1n: Angular extend of the negative cone ([0, 2π]).

• Θ2p: Orientation of negative cone ([0, 2π]).

• I: External input of the neuron. Either the number of the input or no input.
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• rec: Weight of recurrent connection ({0, 1,−1}).

• TE: Circumstances of gas output. ({no gas, activation > 0.5, positive gas
concentration > 0.1, negative gas concentration > 0.1}).

• CE: Type of gas that is emitted ({No gas, positive gas, neggative gas}).

• s: Rate of gas build up/decay ([1, 11]).

• Re: Radius of emitted gas ([10%, 60%] of the area).

• a: Value for Index0
a in formula (2.23) ({1, 2, ..., 12, 13}).

• b: Value for Index0
b in formula (2.23) ({1, 2, ..., 12, 13}).

• c: Value for Index0
c in formula (2.23) ({1, 2, ..., 12, 13}).

• d: Value for Index0
d in formula (2.23) ({1, 2, ..., 12, 13}).

The length of the chromosome is changing in the process of evolution. The
following variants have been tested:

• Variable a is modulated, all other variables are not modulated.

• Variable b is modulated, all other variables are not modulated.

• Variable c is modulated, all other variables are not modulated.

• Variable d is modulated, all other variables are not modulated.

• All variables are modulated.

• No variables are modulated.

For each modulated value a seperate positive and negative gas is emitted. Therefore
the type of gases TE, CE depends on which values are modulated.
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Chapter 4

Results

This chapter contains the results of the evolutionary processes. The acronyms used
in this sections can be found in table 4.1. A detailed analysis of the modulated
spiking neural networks can be found in chapter 5.

The aim of the experiments was to rank the modulated spiking neural networks
among the other tested networks to get a better understanding of the performance
of MSNN. Therefore the focus in this chapter lies more on the comparison of mod-
ulated spiking neural networks to other networks rather than a detailed analysis
of the tasks.

The genetic algorithm was terminated when either the fitness of the best indi-
vidual was higher than 0.99 or generation 200 was reached. Because the number
of generation is equal across all tested neural networks the results should be com-
parable. In addition to that some testing with higher generation numbers did not
show any significant improvement (see appendix B).

4.1 T-Maze

The results of the t-maze-simulation (see section 3.2.1) can be found in tables 4.2 -
4.3. We can see that only the modulated spiking neural networks (b-modulated in
normal t-maze and d-modulated in huge t-maze) were capable of evolving networks
in less than 200 generations which could solve the t-maze task with a success rate
of over 99%. In general the modulated spiking neural networks seem to perform
better than all other networks tested.

If you compare the MSNN where a single value is modulated with the MSNN
without modulation you can see that the single modulated networks tend to per-
form better than the non modulated network and the fully modulated network,
however the t-test does not show any significant difference (P ≥ 5%).

If you look at the continuous-time recurrent neural networks you can see that a
fixed size of neurons does not seem to improve the results. However for the CTRNN
the selection of the activation function seem to have an impact. Networks using
the hyperbolic tangent function perform better in this task than the ones using
the sigmoid function.
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Chapter 4. Results

Network Detailed description

FFN multilayer perceptron with sigmoid function (2.1) as described in sections
2.1 and 3.3.1

FFN (tanh) multilayer perceptron with sigmoid function (2.2) as described in sections
2.1 and 3.3.1

CTRNN CTRNN with fixed size and sigmoid function (2.1) as described in sections
2.2 and 3.3.2

CTRNN (size changing) CTRNN with changing size and sigmoid function (2.1) as described in
sections 2.2 and 3.3.2

CTRNN (tanh) CTRNN with fixed size and tanh function (2.2) as described in sections
2.2 and 3.3.2

CTRNN (tanh, size changing) CTRNN with changing size and tanh function (2.2) as described in sections
2.2 and 3.3.2

GasNet GasNet as as described in sections 2.3 and 3.3.3

MSNN (a) Modulated spiking neural network (modulated vaues: a) as described in
sections 2.4 and 3.3.4

MSNN (b) Modulated spiking neural network (modulated vaues: b) as described in
sections 2.4 and 3.3.4

MSNN (c) Modulated spiking neural network (modulated vaues: c) as described in
sections 2.4 and 3.3.4

MSNN (d) Modulated spiking neural network (modulated vaues: d) as described in
sections 2.4 and 3.3.4

MSNN (full) Modulated spiking neural network (modulated vaues: a, b, c, d) as de-
scribed in sections 2.4 and 3.3.4

MSNN (none) Modulated spiking neural network (no modulated vaues) as described in
sections 2.4 and 3.3.4

Table 4.1: Acronyms for networks

Network Average best Average fitness Average number

individual of generations

FFN 0.202 (0.010) 0.159 (0.003) 200.0 ( 0.0)

FFN (tanh) 0.200 (0.007) 0.160 (0.002) 200.0 ( 0.0)

CTRNN 0.770 (0.052) 0.705 (0.050) 200.0 ( 0.0)

CTRNN (size changing) 0.790 (0.066) 0.742 (0.067) 200.0 ( 0.0)

CTRNN (tanh) 0.855 (0.049) 0.755 (0.056) 200.0 ( 0.0)

CTRNN (tanh, size changing) 0.864 (0.028) 0.819 (0.030) 200.0 ( 0.0)

GasNet 0.835 (0.036) 0.785 (0.032) 200.0 ( 0.0)

MSNN (a) 0.898 (0.042) 0.857 (0.045) 200.0 ( 0.0)

MSNN (b) 0.902 (0.051) 0.862 (0.059) 194.5 (20.5)

MSNN (c) 0.909 (0.041) 0.865 (0.054) 200.0 ( 0.0)

MSNN (d) 0.891 (0.052) 0.846 (0.055) 200.0 ( 0.0)

MSNN (full) 0.880 (0.052) 0.841 (0.057) 200.0 ( 0.0)

MSNN (none) 0.882 (0.059) 0.836 (0.067) 200.0 ( 0.0)

Table 4.2: Average (standard deviation) of 25 evolutionary runs with standard
t-maze simulation

The GasNet performed quiet well with the average best individual and average
fitness being slightly lower than the ones of the CTRNN-tanh networks and higher
than the CTRNN-sigmoid networks.

The feed-forward networks were successful in about one fifth of the trials. This
shows that the task is not solvable for networks without memory.
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Network Average best Average fitness Average number

individual of generations

FFN 0.199 (0.006) 0.158 (0.003) 200.0 ( 0.0)

FFN (tanh) 0.196 (0.006) 0.159 (0.002) 200.0 ( 0.0)

CTRNN 0.773 (0.058) 0.699 (0.042) 200.0 ( 0.0)

CTRNN (size changing) 0.781 (0.083) 0.731 (0.080) 200.0 ( 0.0)

CTRNN (tanh) 0.822 (0.040) 0.717 (0.048) 200.0 ( 0.0)

CTRNN (tanh, size changing) 0.847 (0.054) 0.799 (0.060) 200.0 ( 0.0)

GasNet 0.827 (0.036) 0.785 (0.036) 200.0 ( 0.0)

MSNN (a) 0.868 (0.072) 0.826 (0.078) 200.0 ( 0.0)

MSNN (b) 0.880 (0.067) 0.841 (0.071) 200.0 ( 0.0)

MSNN (c) 0.876 (0.058) 0.830 (0.069) 200.0 ( 0.0)

MSNN (d) 0.885 (0.072) 0.841 (0.078) 195.9 (20.6)

MSNN (full) 0.869 (0.068) 0.823 (0.071) 200.0 ( 0.0)

MSNN (none) 0.876 (0.068) 0.834 (0.071) 200.0 ( 0.0)

Table 4.3: Average (standard deviation) of 25 evolutionary runs with huge t-maze
simulation

4.2 Reber grammar

The results of the t-maze-simulation (see section 3.2.2) can be found in tables 4.4
- 4.7.

The modulated spiking neural networks had problems to find solutions for this
tasks. If we compare the average best individual or the average fitness of the
MSNN with the values of the GasNet or the CTRNN variants we can see that
some CTRNN-variants and the GasNet outperform the MSNN.

4.2.1 (embedded) Reber detect a word

In the “Reber detect a word” task the performance of the MSNN (independent of
the modulated parameter) is around the performance of the feed-forward network
(see table 4.4) while at the “embedded Reber detect a word” the performance is
slightly better than the performance of the feed-forward network (see table 4.6). In
both cases the performance difference between the different modulation variants is
quite close. If you consider that the feed-forward networks can not solve the task
properly because of missing memory, you can conclude that the MSNN was not
able to learn how to detect reber grammar words. The same applies to all other
network types.

If you compare the size changing continuous-time recurrent neural networks
with the non size changing ones, you can see that having a fixed size of neurons
seems to be an advantage in the “Reber detect a word” and the “embedded Reber
detect a word” task. This is most probably due to the fact that the size changing
networks tend to have a low number of neurons (often one or two) because it is
easier to optimise one neuron than multiple. However at a certain point having
more neurons allows the network to develop a more complex behaviour. At that
point it is hard for the size changing networks to add additional neurons because
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they do not improve the results over the few neurons directly.
One interesting note is that the GasNet performed as well as the non size

changing CTRNNs. This is noteworthy because the GasNet itself is size changing.
To get some more information on this topic it would be good to run some more

simulation with size changing and non size changing networks, however this lies
beyond the scope of this bachelor thesis.

4.2.2 (embedded) Reber create a word

In the “Reber create a word” task (see table 4.5) the performance of the modulated
spiking neural network is better or equal than the performance of most CTRNN
variants (except size changing CTRNN with tanh function). However, the perfor-
mance is way worse than the performance of the GasNet. This may indicate that
some of the features which make the GasNet perform well on the “Reber create a
word” task is missing in the MSNNs.

Generally speaking the GasNets have a high fitness compared to all other net-
works tested. This indicates that the structure of the GasNet is advantageous for
this task.

One special exception for the “Reber create a word” task is the feed-forward
network with hyperbolic tangent function, which found a deterministic way of cor-
rectly finishing most of the words. This is interesting not only because no other
tested network type seem to manage this, but also because this could not be re-
produced by the feed-forward networks using the sigmoid function as an activation
function. It would be interesting to look deeper in the dynamics of the feed-forward
networks for this task, however this would exceed the scope of this bachelor thesis.

The results for the “embedded Reber create a word” task (see table 4.7) are
bad across all network types tested here. While the MSNN variants could outper-
form CTRNN and CTRNN size changing, it is worse than the performance of the
CTRNN tanh variants and the GasNet.

Once again the GasNet outperformed all other tested network types. This
further strengthens the theory that GasNets have some structural advantages over
other network in this task.
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Network Average best Average fitness Average number

individual of generations

FFN 0.640 (0.004) 0.609 (0.002) 200.0 (0.0)

FFN (tanh) 0.641 (0.005) 0.610 (0.002) 200.0 (0.0)

CTRNN 0.712 (0.033) 0.670 (0.032) 200.0 (0.0)

CTRNN (size changing) 0.652 (0.020) 0.624 (0.018) 200.0 (0.0)

CTRNN (tanh) 0.697 (0.033) 0.654 (0.029) 200.0 (0.0)

CTRNN (tanh, size changing) 0.673 (0.024) 0.642 (0.023) 200.0 (0.0)

GasNet 0.679 (0.022) 0.651 (0.020) 200.0 (0.0)

MSNN (a) 0.647 (0.029) 0.616 (0.028) 200.0 (0.0)

MSNN (b) 0.639 (0.029) 0.609 (0.026) 200.0 (0.0)

MSNN (c) 0.642 (0.034) 0.613 (0.031) 200.0 (0.0)

MSNN (d) 0.640 (0.039) 0.610 (0.035) 200.0 (0.0)

MSNN (full) 0.640 (0.038) 0.612 (0.036) 200.0 (0.0)

MSNN (none) 0.640 (0.035) 0.611 (0.033) 200.0 (0.0)

Table 4.4: Average (standard deviation) of 25 evolutionary runs with Reber gram-
mar / detect a word

Network Average best Average fitness Average number

individual of generations

FFN 0.078 (0.201) 0.042 (0.156) 200.0 (0.0)

FFN (tanh) 0.889 (0.113) 0.736 (0.143) 200.0 (0.0)

CTRNN 0.211 (0.164) 0.075 (0.092) 200.0 (0.0)

CTRNN (size changing) 0.243 (0.195) 0.127 (0.160) 200.0 (0.0)

CTRNN (tanh) 0.344 (0.051) 0.186 (0.037) 200.0 (0.0)

CTRNN (tanh, size changing) 0.446 (0.050) 0.304 (0.058) 200.0 (0.0)

GasNet 0.722 (0.142) 0.585 (0.139) 193.76 (21.6)

MSNN (a) 0.342 (0.092) 0.193 (0.103) 200.0 (0.0)

MSNN (b) 0.343 (0.100) 0.202 (0.097) 200.0 (0.0)

MSNN (c) 0.326 (0.095) 0.184 (0.088) 200.0 (0.0)

MSNN (d) 0.332 (0.105) 0.183 (0.093) 200.0 (0.0)

MSNN (full) 0.281 (0.107) 0.146 (0.111) 200.0 (0.0)

MSNN (none) 0.356 (0.094) 0.219 (0.100) 200.0 (0.0)

Table 4.5: Average (standard deviation) of 25 evolutionary runs with Reber gram-
mar / create a word
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Network Average best Average fitness Average number

individual of generations

FFN 0.618 (0.009) 0.580 (0.004) 200.0 (0.0)

FFN (tanh) 0.620 (0.007) 0.582 (0.002) 200.0 (0.0)

CTRNN 0.710 (0.047) 0.666 (0.045) 200.0 (0.0)

CTRNN (size changing) 0.674 (0.026) 0.640 (0.024) 200.0 (0.0)

CTRNN (tanh) 0.715 (0.039) 0.675 (0.037) 200.0 (0.0)

CTRNN (tanh, size changing) 0.682 (0.029) 0.649 (0.029) 200.0 (0.0)

GasNet 0.674 (0.017) 0.640 (0.014) 200.0 (0.0)

MSNN (a) 0.627 (0.033) 0.594 (0.032) 200.0 (0.0)

MSNN (b) 0.637 (0.042) 0.604 (0.040) 200.0 (0.0)

MSNN (c) 0.638 (0.037) 0.604 (0.037) 200.0 (0.0)

MSNN (d) 0.628 (0.024) 0.594 (0.022) 200.0 (0.0)

MSNN (full) 0.627 (0.035) 0.595 (0.031) 200.0 (0.0)

MSNN (none) 0.633 (0.039) 0.598 (0.037) 200.0 (0.0)

Table 4.6: Average (standard deviation) of 25 evolutionary runs with embedded
Reber grammar / detect a word

Network Average best Average fitness Average number

individual of generations

FFN 0.000 (0.000) 0.000 (0.000) 200.0 (0.0)

FFN (tanh) 0.000 (0.000) 0.000 (0.000) 200.0 (0.0)

CTRNN 0.004 (0.012) 0.000 (0.000) 200.0 (0.0)

CTRNN (size changing) 0.003 (0.016) 0.000 (0.000) 200.0 (0.0)

CTRNN (tanh) 0.082 (0.061) 0.006 (0.022) 200.0 (0.0)

CTRNN (tanh, size changing) 0.108 (0.080) 0.036 (0.051) 200.0 (0.0)

GasNet 0.269 (0.071) 0.170 (0.053) 200.0 (0.0)

MSNN (a) 0.064 (0.075) 0.025 (0.045) 200.0 (0.0)

MSNN (b) 0.044 (0.056) 0.008 (0.019) 200.0 (0.0)

MSNN (c) 0.054 (0.061) 0.014 (0.028) 200.0 (0.0)

MSNN (d) 0.042 (0.060) 0.009 (0.024) 200.0 (0.0)

MSNN (full) 0.042 (0.055) 0.009 (0.026) 200.0 (0.0)

MSNN (none) 0.034 (0.057) 0.009 (0.025) 200.0 (0.0)

Table 4.7: Average (standard deviation) of 25 evolutionary runs with embedded
Reber grammar / create a word
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Analysis

In the following chapter the evolved modulated spiking neural network will be anal-
ysed to get a better understanding of the function, the advantages and especially
the problems of the modulated spiking neural network architecture.

5.1 T-Maze

The evolved modulated spiking neural networks (for both the normal and the
huge t-maze) show a variety of structures with four or more neurons and different
spiking behaviours. One example of an evolved modulated spiking neural network
(b modulated) can be seen in 5.3. The structure of the network can be seen in
figure 5.1.

In this network neuron 2 does not spike at all because the robot does not need
to go backwards. Since it does not have any connections to other neurons and it

Figure 5.1: Example structure of a modulated spiking neural network (b modu-
lated) solving the t-maze.
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(a) MSNN reaching goal 1 (b) MSNN reaching goal 2

Figure 5.2: Example spiking frequency of a modulated spiking neural network (b
modulated) solving the t-maze

does not emit any gas, it has no further influence.
Neuron 0 (forward) and neuron 1 (goal 1) always spike at the same frequency

while neuron 3 is responsible for choosing the correct goal. If neuron 3 does not
receive any input the spiking rate will decrease at the end resulting in the robot
taking goal 1 (one example see figure 5.2a), however if neuron 3 receives correct
input it will increase the spiking rate resulting in the robot taking goal 2 (one
example see figure 5.2b). This way the whole decision is done only by neuron 3.

Since each neuron can only have one input the information of the other input
values needs to reach neuron 3 through the other neurons. This is done by the
connections neuron 0 → neuron 1 and neuron 1 → neuron 3 (see figure 5.1).
Some examples on how this information is propagated can be seen in figure 5.4,
where each line represents a different run. However because this requires the
cooperation of multiple neurons it seems to be hard to evolve networks that use
all five input values (no network analysed was able to use all input values). The
example network was able to use two input values (neuron 1 and 3 used the input
of the value 1, neuron 0 the input of value 4). However this seems to be enough to
be correct in most cases, because to know the two values are different it is enough
to know that you only get one input.

Since the gas is at a constant level, it is not used at all at the network. This is
also true for almost every other evolved modulated spiking neural network solving
the t-maze, where there is either no gas at all, highly fluctuating gas or gas at a
constant level.
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(a) Neuron 0 (b) Neuron 0 b positive gas (c) Neuron 0 b negative gas

(d) Neuron 1 (e) Neuron 1 b positive gas (f) Neuron 1 b negative gas

(g) Neuron 2 (h) Neuron 2 b positive gas (i) Neuron 2 b negative gas

(j) Neuron 3 (k) Neuron 3 b positive gas (l) Neuron 3 b negative gas

Figure 5.3: Example of a modulated spiking neural network (b modulated) solving
the t-maze.
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(a) Neuron 0: No input (b) Neuron 1: No input (c) Neuron 3: No input

(d) Neuron 0: No input (e) Neuron 1: Input lead-
ing to small changes in
spiking heights (around 80
and 380)

(f) Neuron 3: Input and
connection from neuron 1
leading to high spikes at
the end and around 110

(g) Neuron 0: Input lead-
ing to lower values around
120 and higher spikes
around 420

(h) Neuron 1: No input,
changes to spiking pattern
due to connection from
neuron 0

(i) Neuron 3: No input,
changes to spiking pattern
due to connection from
neuron 1

Figure 5.4: Effect of input on example modulated spiking neural network (b mod-
ulated) solving the t-maze.
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5.2 Reber grammar

5.2.1 Reber detect a word

If you look at the evolved size changing networks (including all modulated spiking
neural networks), you can see that neither of them has found a way of detecting
correct grammar (for both embedded and non-embedded Reber grammar). One
typical example of modulated spiking neural networks can be found in figure 5.5.
This network consists of one single neuron which listens for the character E. The
network only accepts words with the letter E at the end, which is slightly better
than random guessing.

If you look at the words processed by the network, you can see a constant
spiking rate at the beginning, high enough that a word gets accepted. Around
time step 60 the height of the spikes suddenly increases - however this has nothing
to do with the input. The internal charge of the neuron alternates between negative
values and a value slightly over 30 in steps 0 to 60 (approximately −66 → 30 →
−66), which leads to a constant spiking rate of one spike every two steps. This
way a word would be accepted. However at about step 60 the spiking changed
- instead of reaching a value higher than 30 it reaches a value slightly below 30.
The reason for this is that the u value gets increased after each spike (see formula
(2.17)), resulting in a smaller charge per step (see formula 2.13). This way one
spiking goes approximately −66→ 29→ 300→ −66, resulting in a lower spiking
rate (one spike every three steps). If no letter E is in the word the spiking rate
stays at the lower level resulting in the network not accepting the word (e.g. figure
5.5b). However if the letter E is put into the network, the additional input is
enough to add up to 30 in the second step leading to the original spiking rate. If
this is at the end of the word the word is accepted because of the higher spiking
rate (e.g. figure 5.5a, 5.5c, 5.5d). Otherwise the spiking rate returns to the lower
version after the letter (e.g. figure 5.5d).

In all networks analysed, the gas had no impact at all.
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(a) Word 1: BPTTTTVPXTVVE (b) Word 2: BPVPSS

(c) Word 3: BPVPXVVE (d) Word 4: BTSESSSXSE

Figure 5.5: Example of neuron activity of MSNN for the “Reber detect a word”
simulation including input characters. Characters the network reacts to are
coloured blue.
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Beginning of word Completion by network Shortest legal ending Correct Reber grammar word

BPTTTVPXT E VVE no

BPTTVP VE SE no

BTX SE no

BPTV V VE no

BTXXTTTTVPXV EEEEE VE no

BTSS XSE no

BPTTTV EVVE VE no

BPTV V VE no

BPV VE VE yes

BPVP E SE no

Table 5.1: Examples for Reber grammar word completion by a modulated spiking
neural network (a modulated)

Beginning of word Completion by network Shortest legal ending Correct Reber grammar word

BTBPV EETE VETE no

BPBPTTV TE VEPE no

BTBPTV ETE VETE no

BTBPV EETE VETE no

BTBPV EETE VETE no

BTBTXXTV E VETE no

BPBPTTTVPXT T VVEPE no

BTBPVP ETE SETE no

BTBTSSSSS TE XSETE no

BPBTXXTTVP SEPE no

Table 5.2: Examples for embedded Reber grammar word completion by a modu-
lated spiking neural network (a modulated)

5.2.2 Reber create a word

The modulated spiking neural network tried to learn specific patterns to finish
words, however because the grammar is really hard they only developed patterns
that work for certain words. Therefore the network tries combinations of the last
characters (VE or SE for Reber grammar, TE or PE for embedded Reber) to
finish the words. Some of the found examples can be seen in tables 5.1 and 5.2.

One interesting aspect that could be observed are feedback loops in which the
internal charge of the neuron (normally up to about 400) could get up to really
high values. This occurs when a word is longer than the network expected. Some
examples of these feedback loops can be seen in figure 5.6. They normally happen
when the simulation is running for a longer time than expected by the network (for
example because it should complete a long Reber grammar word). These feedback
loops could hinder these networks to be used in long running tasks or tasks with
highly variable running times.

The reason why these feedback loops occur is a combination of the increase of
the u parameter after a spike (see formula (2.17)) and the selection of the parameter
ranges, especially the a parameter (see formula (2.18)). When such a feedback loop
occurs the function which should reset the u parameter (formula (2.14) and (2.16))
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Chapter 5. Analysis

Figure 5.6: Example of feedback loops observed in “Reber create word” task

does not work correctly because the a parameter is either zero or very small. This
leads to the u parameter growing bigger the more spikes have occurred (see figure
5.7). At one point the value of u has grown so big it is the most prominent factor
in the formula for the internal value of a neuron (see formula (2.13) and (2.15)).
At this point the spiking cycle turns into the following three steps:

1. Reset and increase of u

2. Highly negative v value because of −u in formula (2.13)

3. Huge v due to v2 in formula (2.13)

4. Reset and increase of u

This problems comes from the selection of the a parameter by Stefan Bruhns
[Bru15]. It can easily be fixed by selecting higher parameters for a.
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5.2. Reber grammar

(a) Internal value of neuron (v parameter)

(b) u parameter

Figure 5.7: v and u of one neuron at a feedback loop
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(a) No gas emitted
(b) Highly fluctuating gas
concentration.

(c) Constant gas concen-
tration

Figure 5.8: Example of gas usage in modulated spiking neural networks

Once again the gas does not seem to have a huge impact on the final networks,
with often no gas at all (figure 5.8a), highly fluctuating gas (figure 5.8b) or a
constant gas concentration (figure 5.8c). This indicates that the evolution is not
able to use the gas mechanism to an advantage. The problem with the observed
gas patterns are as follows:

• If no gas is emitted at all, then the special feature - the modulation of the
neuron behaviour - is never used.

• If the gas is highly fluctuating it means the gas has no or only a small impact,
especially because it is often emitted and decayed in the same simulation step
and thus it can’t have a long-time effect.

• If the gas is constant, this means we can simply change the value of the
modulated parameter of the neuron to get the same effect, thus it is almost
equal to having no gas at all.
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Conclusion

The modulated spiking neural network architecture is in general a powerful archi-
tecture capable of solving tasks very efficiently (like the t-maze) by using only a
few neurons for a lot of computation. We have also looked into the function of the
network for different tasks. However, there are some problems with the network
architecture that may hold back its potential.

First the way gas is released in modulated spiking neural networks was borrowed
from GasNets. The release of gas had a big influence in GasNets [Hus98] and
therefore one assumption was that the release of gas would benefit the network -
however, because the modulated spiking neural networks work a lot different then
traditional networks (like GasNets or CTRNN) due to the spiking neurons, the
choice of the gas release function may not be the best one. This problem can
probably be solved by finding better conditions for the gas release which are more
stable over time. Some possible gas functions may be:

• Instead of depending on values at one internal step (like charge at one internal
step or gas concentration at one internal step) it could be useful to use some
kind of “moving average” over values (like number of spikes in the last ten
time steps or average gas concentration over the last 10 time steps).

• Another method would be to release gas on spikes and only have a small
decay when no spike occurs. The decay must be small enough that the gas
is not completely decayed if the neuron has a small period of time without
spiking.

In addition to that I identified feedback loops as a potential source of problems
which can occur when the network is running over a longer period of time, especially
if the network does not expect such a long running time. This can be problematic
in real world use cases. The problem exists because of the selection of modulation
parameter by Stefan Bruhns [Bru15], for which he unfortunately does not give an
explanation of his choice. It would be useful to replace them in a way that create
biologically meaningful spiking pattern.

After this thesis has analysed the current modulated spiking neural network
architecture, the next step would be the improvement of the architecture, especially
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the replacement of the gas function and the determination of better modulation
parameter. However such work would exceed the scope of this bachelor thesis.

The source code used in this bachelor thesis can be found at BitBucket or
GitHub. See appendix C for more information.
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Appendix A

Different Gas Concentration
Functions

Husbands et al. used in their original paper the gas concentration function (2.10)
[HSJO98, Hus98]. In other works [SHPO02, Smi02, MP06] a different gas concen-
tration function is used:

C(d, t) =

{
C0 · e−( d

r
)2 · Tt(t) d < r

0 else
(A.1)

Smith wrote in an annotation in his PhD [Smi02] that the different exponential
does not make any significant difference. To verify this I have run some experiments
of my own. I have used the t-maze simulation (section 3.2.1) with the genetic
algorithm (section 3.1). The results are in table A.1.

The difference between the different gas concentration functions does not show
any significant difference for the modulated spiking neural networks (t-test: P <
5%), however there seems to be a significant difference for the GasNets (t-test:
P ≤ 5%). It would be good to have a more detailed analysis of the impact of the
gas concentration function on GasNets, however this lies beyond the scope of this
bachelor thesis.

Network Average best Average fitness Average number

individual of generations

GasNet (2.10) 0.826 (0.033 ) 0.782 (0.032 ) 200.0 ( 0.0 )

GasNet (A.1) 0.857 (0.045 ) 0.815 (0.046 ) 198.2 (12.4 )

MSNN (full, 2.10) 0.889 (0.056 ) 0.846 (0.064 ) 200.0 ( 0.0 )

MSNN (full, A.1) 0.884 (0.051 ) 0.840 (0.061 ) 199.0 ( 6.8 )

Table A.1: Average (standard deviation) of 50 evolutionary runs with standard
t-maze simulation and different gas concentration functions

37



Appendix A. Different Gas Concentration Functions

38



Appendix B

Number of generations

All runs presented in the result chapter (see chapter 4) were done with a maximum
of 200 generations. The raises the question whether there are any more interesting
effects after these 200 generations. To test this I have done some more runs with
a maximum of 2000 generations. Therefore I have chosen the best performing
modulated spiking neural network (in regards to average best individual) which
does not reach an average number of generations other than 200. The results can
be seen in table B.1.

In the case of the Reber grammar (both detect a word and create a word) the
results are only slightly higher due to the longer optimisation time. However no
spikes in fitness or similar events could be observed which lead to the conclusion
that a longer running time has no huge impact.

In the case of the t-maze simulation two out of 25 runs reached a network with
a success rate higher than 0.99 before reaching 2000 generation. However because
of the relative similar fitness values and the high number of networks not reaching
2000 generations we can assume that overall the higher number of generation does
not have a huge impact on the results.

Network and simulation Average best Average fitness Average number

individual of generations

MSNN (c) t-maze 200 0.909 (0.041) 0.865 (0.054) 200.0 ( 0.0)

MSNN (c) t-maze 2000 0.944 (0.038) 0.918 (0.043) 1919.0 (351.7)

MSNN (b) Reber create 200 0.343 (0.100) 0.202 (0.097) 200.0 ( 0.0)

MSNN (b) Reber create 2000 0.472 (0.095) 0.383 (0.093) 2000.0 ( 0.0)

MSNN (c) Reber detect 200 0.642 (0.034) 0.613 (0.031) 200.0 ( 0.0)

MSNN (c) Reber detect 2000 0.686 (0.036) 0.663 (0.034) 2000.0 ( 0.0)

Table B.1: Comparison of 25 evolutionary runs on different simulations with dif-
ferent numbers of generations
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Appendix C

Source code listing

The source code used in this bachelor thesis is released under the GNU Lesser
General Public License version 3 or later (LGPL3+) and GNU Lesser General
Public License version 3 or later (GPL3+) on BitBucket and GitHub. A detailed
list can be found at table C.1.

Program License BitBucket Github

qnn library LGPL3+ https://bitbucket.org/Top-Ranger/qnn https://github.com/Top-Ranger/qnn

qnn-neuron-visualiser GPL3+ https://bitbucket.org/Top-Ranger/qnn-neuron-visualiser https://github.com/Top-Ranger/qnn-neuron-visualiser

qnn-run-analyser GPL3+ https://bitbucket.org/Top-Ranger/qnn-run-analyser https://github.com/Top-Ranger/qnn-run-analyser

qnn-single-run GPL3+ https://bitbucket.org/Top-Ranger/qnn-single-run https://github.com/Top-Ranger/qnn-single-run

qnn-structure-creator GPL3+ https://bitbucket.org/Top-Ranger/qnn-structure-creator https://github.com/Top-Ranger/qnn-structure-creator

qnn-ui GPL3+ https://bitbucket.org/Top-Ranger/qnn-ui https://github.com/Top-Ranger/qnn-ui

qnn-visualiser GPL3+ https://bitbucket.org/Top-Ranger/qnn-visualiser https://github.com/Top-Ranger/qnn-visualiser

Table C.1: Source code listing
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