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Abstract-Machine unlearning using the SISA technique 
promises a significant speedup in model retraining with only 
minor sacrifices in performance. Even greater speedups can be 
achieved in a distribution-aware setting, where training samples 
are sorted by their individual unlearning likelihood. Yet, the 
side effects of these techniques on model performance are still 
poorly understood. In this paper, we lay out the impact of 
SISA unlearning in settings where classes are imbalanced, as 
well as in settings where class membership is correlated with 
unlearning likelihood. We show that the performance decrease 
that is associated with using SISA is primarily carried by 
minority classes and that conventional techniques for imbalanced 
datasets are unable to close this gap. We demonstrate that even 
for a class imbalance of just 1:10, simply down-sampling the 
dataset to a more balanced single shard outperforms SISA while 
providing the same unlearning speedup. We show that when 
minority class membership is correlated with a higher- or lower­
than-average unlearning likelihood, the accuracy of those classes 
can be either improved or diminished in distribution-aware SISA 
models. This relationship makes the model sensitive to naturally 
occurring unlearning likelihood correlations. While SISA models 
tend to be sensitive to class distribution we found no impact on 
imbalanced subgroups or model fairness. Our work contributes 
to a better understanding of the side effects and trade-offs that 
are associated with SISA training. 

Index Terms-machine unlearning, class imbalance, fairness 

I.  INTRODUCTION 

Under legislation such as the California Consumer Privacy 
Act (CCPA)1 in California, the General Data Protection Reg­
u1ation (GDPR)2 in the European Union, or Personal Infor­
mation Protection and Electronic Documents Act (PIPEDA? 
in Canada, people have a right to request the deletion of their 
personal data, also referred to as right to be forgotten. While 
this right can often be honored easily by deleting all database 
entries relating to a specific person, erasure becomes much 
more difficult if the characteristics of one's personal data have 
already been ingrained in a trained machine learning model. 

The impossibility to separate training data from trained 
models is exemplified by membership inference attacks [1] , 

1 https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id= 
201720180AB375 

2http://dala.europa.eu/elilreg/2016/679/2016-05-04 
3https://laws-lois.justice.gc.ca/PDF/P-8.6.pdf 
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Fig. 1. Average slice unlearning likelihoods for different SISA strategies in a 
SISA model with 5 shards and 3 slices each. Slices in a shard are trained from 
bottom to top. The adaptive strategies evaluated by us place samples with a 
high unlearning likelihood in specific locations while keeping the shard and 
slice size fixed. 

which allow an adversary to determine if a given data record 
was part of the training set of a black-box model. This 
inseparability motivates the need for machine unlearning [2], 
[3], which refers to any technique that is able to remove 
the influence that any particular training point had on the 
final model. The term exact unlearning refers to methods 
that formally remove the data points influence by retraining 
the model without it, while approximate unlearning refers to 
methods that try to approximate the model parameters that 
exact unlearning would yield without actually retraining the 
model [4]. 
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Retraining a model from scratch is time-, energy- and cost­
intensive, especially when the model has many parameters or 
the training dataset is large. One exact unlearning method that 
tries to reduce the computational overhead associated with 
retraining is SISA [5], which stands for Sharded, Isolated, 
Sliced, and Aggregated training. SISA training divides the 
training data into S disjoint shards of approximately equal 
size. The data in each shard is then further separated into 
R disjoint slices. During training, one constituent model is 
trained per shard. In a single shard, this means training a model 
on the first slice and then saving the parameters of the model. 
The model parameters are then loaded again for each of the 
remaining slices, further trained, and saved again, until the 
training data in the last slice has been processed. These last 
obtained parameters define the constituent model of that shard. 

At inference time, the input is processed by each constituent 
model and the responses are then aggregated, for example 
through majority voting [5]. If any given data point has to be 
deleted, only the constituent model associated with the shard 
containing the data point has to be modified. Retraining only 
has to take place for the slice containing the data point as well 
as all following slices in the same shard, and the last saved 
checkpoint before those slices can be used as starting point. 
For a single data point, retraining is quicker if it is located 
in a later slice. If multiple data points have to be removed 
at once, it is beneficial if those data points are located in the 
same shard. This effectively limits the total cost of retraining 
to the maximum individual retraining cost, as all following 
slices have to be retrained anyways. 

By default, data points in SISA training are assigned to 
shards and slices at random [5]. Even if the number of deletion 
requests processed at a time is relatively low, this makes it 
likely that all constituent models will have to be retrained. 
However, if the unlearning likelihood of individual data points 
is either known in advance or can be estimated with reasonable 
accuracy, the authors [5] suggest that this would allow us to 
group high-likelihood data points together to further improve 
the cost of retraining. This can be realized by placing data 
points with a high unlearning likelihood in designated shards, 
which the authors call distribution-aware sharding. Alterna­
tively, and motivated by the observation made in the previous 
paragraph, high-likelihood data points can also be preferably 
placed in later slices, which we call distribution-aware slicing. 
Examples of the resulting shard and slice composition of all 
strategies can be seen in Fig. 1 .  

As the complete model parameters have to be saved S * R 
times instead of just once, SISA effectively represents a trade­
off between disk space (and inference time) and computing 
effort for retraining [5]. As long as disk space is considerably 
cheaper than GPU compute and there are much more training 
than inference steps, this trade-off is beneficial. The retraining 
speedup associated with using SISA ranged between 1 .36 x 
and 4.63x in the experiments conducted in the original 
publication [5] for reasonable amounts of shards and slices. 
At the same time, using SISA was associated with a decline 
in model accuracy. 
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The authors discussed that the speedup of retraining is 
mainly dependent on the number of shards, and increasing 
the number of slices has a quickly diminishing return beyond 
a few slices [5]. However, the same holds true for the accuracy 
degradation of the final model, which gets bigger if more 
shards are used. The explanation given by the authors is that 
each constituent model must be presented with sufficiently 
many data points during training in order to reach a good 
performance [5]. A single constituent model sees the exact 
same amount of training samples for any number of slices 
- only in a different order. However, when the number of 
shards is increased, the absolute amount of training samples 
per constituent model sinks proportionally. This impairs each 
constituent models ability to generalize and thus lowers the 
accuracy of the entire ensemble. 

This observation motivates the question how SISA models 
behave when the number of shards is low and the absolute 
number of training examples per shard is high, but the number 
of training examples for individual underrepresented classes is 
low. If sample numbers across classes are reduced linearly in 
each shard, will neural scaling laws harm the performance of 
small classes disproportionately? 

In summary, the contributions of this paper are: 

• We show that the accuracy gap introduced by SISA 
training is bigger for minority classes, and gets bigger 
as the imbalance ratio rises. 

• We demonstrate that both simple and advanced methods 
against class imbalance, even though successful in bring­
ing the performance of majority and minority classes 
closer together, are unable to eliminate this unequal 
burden. 

• We show that SISA is outperformed by a simple down­
sampled lone shard model on minority classes while 
preserving the same retraining speedup. 

• We demonstrate that minority classes are sensitive to 
correlations with unlearning likelihood in distribution­
aware SISA settings and that both a positive and negative 
correlation between unlearning likelihood and minority 
class membership can be used to improve the perfor­
mance of said classes. 

• We show that SISA models do not introduce an equivalent 
accuracy gap for imbalanced subgroups, and also have no 
impact on traditional fairness metrics. 

II. RELATED WORK 

The topic of Machine Unlearning [2], [3] or the removal of 
data from trained models is a recent topic in machine learning 
[4], [6]-[9]. One framework for unlearning is SISA training 
(Sharded, Isolated, Sliced, and Aggregated training) [5]. SISA 
is discussed in literature as a tool for data protection and 
trustworthy AI [10]-[12]. Besides allowing effective machine 
unlearning, SISA seems to protect well from attacks on privacy 
as the aggregation step of SISA reduces the influence of 
individual samples on the final prediction [13]. However, it 
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is theoretically possible for an adversarial actor to completely 
degrade the accuracy of SISA [14]. 

Another topic related to machine learning are imbalanced 
classes [15], [16]. Classes are imbalanced if the size of at 
least one class (minority class) is considerably smaller than 
another class (majority class). As a result, the performance 
of the model on the minority class has a smaller impact 
on the average accuracy on the dataset, which in return 
leads to solutions that classify minority classes inaccurately. 
According to [17], most existing solutions for the problem of 
imbalanced classes include introducing learning bias against 
majority classes, under- or oversampling of data, and cost­
sensitive learning. Overviews of current methods to tackle 
class imbalance can be found in [18], [19]. 

To the best knowledge of the authors, no work has yet 
investigated the impact of class imbalance on SISA learning 
or machine unlearning. 

Ill. HOW DOES SISA AFFECT IMBALANCED DATASETS? 

In many applied contexts, different classification outcomes 
are not equally likely. One such context where the processed 
data is both highly imbalanced and highly sensitive is the 
medical domain (for examples, see [20]-[22]). If you intend 
to build a classifier that is able to detect the presence of a 
rare disease, you will most likely have to work with many 
samples from healthy patients and only very few samples 
from sick patients. For many tasks, imbalances of 1 : 100 and 
beyond are not unheard of (e.g. [21]). At the same time, 
medical datasets, especially image datasets, can be very large 
and computationally expensive to process. For example, full­
scale histopathology images can reach the size of gigapixels 
[23] and models working with these images take long to train 
even when using helpful techniques such as downsampling 
and tiling. If the training data for such models fall under a 
privacy-focused jurisdiction, using SISA seems like a good 
idea to ensure that retraining is both faster and cheaper. But 
does SISA impact imbalanced datasets differently? 

A. Datasets 
When SISA was introduced [5], the effects on the perfor­

mance were evaluated on the MNIST [24], Purchase [25], 
SVHN [26], CIFAR-100 [27], Imagenet [28], and Mini­
Imagenet [29] dataset. The authors assigned task complexities 
to each of these datasets, with the first three being regarded 
as easy and the latter three as hard tasks. According to the 
authors, sharding and slicing combined have no significant 
impact on accuracy for easy tasks, and result in only a small 
accuracy decrease in the single percentage point realm for hard 
tasks when pretraining is used [5]. 

When comparing the ratio of the largest and smallest class in 
each dataset (see Table 1), the maximal imbalance ratio for the 
evaluated datasets ranges between 1 : 1  and 1 :5.2. 1n the original 
paper [5], results were reported in terms of overall average 
model accuracy, so even for the datasets where imbalances 
were present, the accuracies of individual classes were not 
reported separately. 

TABLE I 
DATASET CHARACTERISTICS 

Dataset 

MNIST [24] 
Purchase [25] 

SVHN [26] 
CIFAR-100 [27] 

Imagenet [28] 
Mini-lmagenet [29] 

EMNIST Digits [30] 
Modified EMNIST 

Digits (ours) 

Train size 

60,000 
160,058 
604,388 
60,000 
1,281,167 
60,000 
240,000 

170,664 

# Classes 
10 
2 
10 
100 
1000 
100 
10 

10 

Max. imbalance 

1 : 1  
1:2.7 
1:2.7 
1 :1  
1:5.2 
1 : 1  
1 : 1  

1 :1000 

In order to evaluate the impact SISA has on imbalanced 
classes, we are using the EMNIST [30] ("Extended MNIST") 
dataset, a superset of MNIST containing handwritten digits 
and letters. More specifically, we are utilizing the EMNIST 
Digits dataset, a balanced dataset containing 24,000 training 
and 4,000 testing samples per class. Having a dataset multiple 
times bigger than MNIST allows us to explore the limits of 
SISA to a larger extent, and create synthetic class imbalances 
up to 1 : 1000. Even though the SVHN dataset also has a large 
total size and 10 classes [26], the fact that house number 
digits do not occur with an equal probability gives this dataset 
a natural imbalance, making it more difficult to introduce 
specific imbalances in an experimental setting. 

B. Learning with Class Imbalance 

Many methods for learning with class imbalance have 
been proposed over the years, which can roughly be divided 
into data-level methods, algorithm-level methods and hybrid 
methods [18]. The following methods are utilized in our paper: 

• data-level methods: random over-sampling (ROS), ran­
dom under-sampling (RUS) 

• algorithm-level method: cost-sensitive learning, focal 
loss, label-distribution-aware margin (LDAM) loss 

All methods used in our experiments require knowledge of the 
global class distribution. However, when using SISA, shards 
and slices are isolated, and we only have local knowledge 
reflecting the class distribution in the current slice. Because 
of this, the used sample numbers and class costs in our ex­
periments are recalculated for each slice, and will differ from 
slice to slice. If any individual shard has a class distribution 
substantially different from the overall dataset, the sample 
numbers and class costs will reflect that difference and differ 
substantially as well. 

Both ROS and RUS [31], [32] work by manipulating the 
dataset. In ROS, random copies of minority samples are added 
to the dataset until all classes are of equal size. In RUS, 
random samples from the majority classes are removed from 
the dataset until all classes are of equal size. In the context 
of machine unlearning, ROS is undesirable, as it increases the 
size of the dataset and thus extends the training time. RUS is 
desirable, as it decreases the size of the training dataset and 
thus shortens the training time. 

624 
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Because of this, RUS can in itself be considered a method 

against class imbalance that comes with improved machine 

unlearning as a free add-on. In all our experiments, RUS is 
evaluated like the lone shard baseline in the original SISA 

paper [5]. This means it is trained like a SISA model with 
only 1 shard but the same number of slices as whatever SISA 
model it is being compared to, making both models benefit 

equally from the slicing speedup. To achieve a speedup at 
least as good as for a SISA model with S shards, RUS has to 

result in a final dataset size that is smaller than the original 

dataset by at least a factor of .JS. This relationship can be 
derived from the fact that a 1/ S lone shard baseline is always 

faster than a SISA model with S shards by a factor of S 

when unlearning requests are processed sequentially [5]. When 
unlearning requests are processed in reasonably small batches 

(i.e. not the entire dataset is being unlearned), the 1/ S lone 

shard baseline outperforms SISA training with a speed-up of 
at least S [5]. In the hatched setting, the speed-up of the SISA 

model degrades quicker than that of the lone shard baseline, 
and even less under-sampling is needed for the lone shard to 

preserve equivalent speeds. 

Because of this, we will not combine RUS with SISA, but 
rather evaluate it as a third kind of machine unlearning method 

that can be combined with additional algorithm-level methods 

against class imbalance. 
Cost-sensitive learning [33] allows us to assign a different 

importance or cost to each class. Then, during training, instead 

of minimizing our prediction error, we are minimizing the 
costs of our prediction errors. While cost-sensitive learning 

can be used to achieve a number of goals [33], the intention 

for using it with imbalanced datasets is to produce models 
that have more similar accuracies on majority and minority 

classes, despite substantial differences in the number of train­
ing examples. In our experiments, we are combining the loss 
with class-wise costs, where the costs are equal to the square 

root of the inverse number of samples per class, normalized 
by the average number of samples per class. This means that 

a perfectly balanced dataset has class costs of only ones, 

whereas any imbalanced dataset will have class costs above 
one (minority classes) and below one (majority classes). Thus, 

any individual sample belonging to a minority class will have 
a larger effect on the batch loss than a sample belonging to a 
majority class, which counteracts the lower expected absolute 

number of such samples in each batch. 

Focal loss [34] was originally designed for dense object 
detection, where a classifier was moved over many locations 

of an image. However, this means that many locations have 
no object and only a few include the target object. If all 

locations are used for training this generates a highly imbal­

anced dataset. To counter this effect, Lin et al. [34] added 
a modulating term to cross-entropy loss which gives well­
classified samples a lower influence on the average batch 
loss than hard misclassified samples. The scaling factor 1 in 

the modulating term controls how much the impact of easy 

samples is reduced. 

LDAM loss [35] focuses on the decision boundary of the 
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classifier and forces the model to have a larger margin between 

the decision boundary and minority classes than between the 

decision boundary and majority classes. This allows the model 
to achieve better generalization for minority classes while 

losing only minor generalization on the majority class. 

Both focal loss and LDAM loss can be combined with cost­

sensitive learning and have been shown to complement each 
other [35]. In our experiments, they are thus combined with 
the costs described in the section above. 

C. Implementation details 

To find out which effect SISA has on majority and minority 

classes, we establish an experimental regime that allows us 

to measure the impact of SISA on prediction performance 
depending on the imbalance of each class. 

Out of the 10 EMNIST [30] digit classes, we keep 7 classes 
as they are, and keep samples from the 3 remaining classes 

with a probability of 10%, 1% and 0.1 %, corresponding to 

resulting class imbalances of 1 : 10, 1 : 100 and 1 : 1000. Each 
experiment is repeated 10 times in a way that ensures that 

each digit gets assigned each of the three imbalance ratios 
exactly once. This ensures that classes which are easier or 
harder from the beginning (such as discerning the digits 3 and 

8) have no effect on the reported results. 

The used model architecture is a ResNet-18 [36] which was 
modified to process black-and-white instead of RGB images 

and is followed by a classifier consisting of 3 fully connected 

layers with dropout. We are using a learning rate of 6e-4, 

Adam [37] as optimizer and train each model for 5 epochs. 
At inference time, the post-softmax class distributions [5] of 

all constituent models are summed up and then evaluated. 

Compared to simple majority voting, this method allows for 
a more fine-grained aggregation of model predictions in the 
ensembling step. The authors of the original SISA publication 

[5] found that this aggregation strategy yields better perfor­
mance on Imagenet and Mini-Imagenet, while not hurting the 

performance on the SVHN and Purchase dataset. 

During evaluation, we record prediction error rates (1 -
accuracy) per class using the balanced test set of 40,000 
samples. We do not care about the error rates for individual 

digits, but rather for the error rates depending on if that 

class was a majority or minority class. Hence, results are not 
reported for 10 classes but rather grouped by class size in the 

training data or imbalance ratio respectively. 

Given our dataset, which was chosen to be as large as 
possible, we chose 5 shards and 3 slices as a compromise 
between speedup and sample representation. If too many slices 

have 0 samples of a given class, we are not able to draw 

meaningful conclusions about the methods we are evaluating. 
Specifically, the likelihood of having at least one slice with 

0 samples of the 1 : 1000 class using random allocation and 

having only 24 samples at hand is already 98.5%. Because 
of this, we deviated from the default shard and slice values 
from the original SISA paper [5] but rather addressed their 
influence in our ablation experiments (Section III-E). 
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Fig. 2. Error rates for all classes with a given imbalance ratio, with annotations for the mean error rates. For the majority class group n=70, for each minority 
class group n=10. Whiskers at Q1 -/Q3+1.5 IQR. 

TABLE II 

ERROR RATES AND RATES OF DETERIORATION 

monolith SISA 

majority 1 : 10 1 : 100 1 :1000 majority 1 : 10 1: 100 1 : 1000 

0.0041 0.0112 0.0588 0.8033 0.0041 0.0214 0.1666 1.0* 
regular 

(:=mcer) (2.7xmcer) (14.4xmcer) (196.3 xmcer) (:=mcer) (5. 1 xmcer) (40.5xmcer) (242.8xmcer) 

ROS 
0.0042 0.0113 0.0463 0.2044 

(:=mcer) (2.7xmcer) (11.1 xmcer) (48.9xmcer) 

costs 0.0053 0.0111  0.0456 0.1519 
(:=mcer) (2. 1 xmcer) (8.6xmcer) (28.5xmcer) 

costs 0.0074 0.0164 0.0629 0.1884 
+ focal 1oss (:=mcer) (2.2xmcer) (8.4xmcer) (25.3xmcer) 

costs 0.0060 0.0212 0.0637 0.2796 
+ LDAM loss (:=mcer) (3.6 xmcer) (10. 7xmcer) (46.8 xmcer) 

RUS to 1/VS 

majority 1 : 10 1 : 100 1 :1000 

regular 
0.0071 0.0159 0.0765 0.6794 

(:=mcer) (2.2xmcer) (10.8xmcer) (95.8xmcer) 

costs 
0.0094 0.0129 0.0365 0.1331 

(:=mcer) (1.4xmcer) (3.9xmcer) (14.2xmcer) 

We repeat our experiment for a monolithic baseline model 
and a SISA model. Both models are trained regularly as 
well as using all methods against class imbalance described 
in Section ill-B. For the experiments that use focal loss, 
we have chosen 1 = 1 .0. RUS is evaluated on its own 
as well as in combination with cost-sensitive learning with 
regular cross-entropy loss. The resulting RUS dataset has a 
size of 170, 664/ v'5 = 76, 323 samples and includes all of 
the original minority class samples. It will be trained like a 
SISA model with 1 shard and 3 slices. 

0.0039 0.0159 0.0870 0.5115 
(:=mcer) (4. 1 xmcer) (22.6xmcer) (132.7xmcer) 

0.0045 0.0184 0.0717 0.7164 
(:=mcer) (4. 1 xmcer) (16.0xmcer) (160.0 xmcer) 

0.0045 0.0159 0.0626 0.5340 
(:=mcer) (3.5xmcer) (13.9xmcer) (ll9.0 xmcer) 

0.0098 0.0359 0.1260 0.6646 
(:=mcer) (3.7xmcer) (12.8 xmcer) (67. 7xmcer) 

mcer = majority class error rate 

* = maximum reached 

D. Results 

Fig. 2 and Table II show the error rates grouped by model 
type and class imbalance. The error rate becomes higher when 
the class imbalance becomes more extreme. For the monolithic 
baseline model, mean error rates compared to the majority 
class are 2.7x as high for an imbalance of 1:10, 14.4x as 
high for an imbalance of 1: 100, and 196.3x as high for an 
imbalance of 1 :1000. 

Similar observations can be made for SISA, but the rate of 
deterioration is considerably higher. While the majority class 
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performance remains practically unchanged, the mean error 
rates compared to the majority class are already 5 . 1  x higher 
for an imbalance of 1 : 10, 40.5 x  higher for an imbalance 
of 1 : 100, and 242.8x higher for an imbalance of 1 : 1000. 
Compared to the previous rate of deterioration, this reflects 
an increase of +92%, + 184%, and +24.5% respectively. One 
should note that the performance deterioration for the classes 
imbalanced by 1 : 1000 has already reached its natural maxi­
mum (100% error rate/0% accuracy), and thus also the +24.5% 
change in the speed of deterioration reflects the maximum 
possible rate of increase. These results suggest that not only 
does the performance of minority classes also deteriorate when 
using SISA, but it does so much more quickly than if SISA 
were not used for training. 

Almost all evaluated methods against class imbalance im­
prove the performance of minority classes both in the mono­
lithic as well as the SISA model. Cost-sensitive learning with 
LDAM loss improves the performance of the most extreme 
1 : 1000 classes but yields higher error rates for the majority and 
some of the other minority classes. In the monolithic model, 
cost-sensitive learning with regular cross-entropy loss delivers 
the best overall error rates. In the SISA model, cost-sensitive 
learning with focal loss has the best overall error rates. 

However, two observations hold for all evaluated methods: 
First, that the minority class error rates become larger mu1-
tiples of the majority class error rate with higher imbalance 
ratios, meaning that none of the methods were able to remove 
the effects of the class imbalance completely. Second, and 
more importantly, that the majority class error rate multiples 
in the SISA models are always larger than the corresponding 
values in the monolithic model. For example, while the error 
rate for the 1 : 100 class in the monolithic ROS model was 
1 1 . 1  times as high as the majority class error rate, it is 22.6 
times as high in the SISA model. This means that while 
the overall performance of minority classes improves using 
methods against class imbalance, the unequally distributed 
burden introduced by SISA remains. The same pattern emerges 
when using data augmentation during training, for an ablation 
study see Appendix A. 

RUS resu1ts in majority class error rates worse than both 
the monolith and the SISA model. This is not surprising, as 
it has fewer training examples to learn from. Combined with 
cost-sensitive learning with cross-entropy it outperforms all 
other evaluated models in the 1 : 100 and 1 : 1000 classes and 
only performs slightly worse than the (slower) monolith model 
with costs on the 1 :  10 classes. The pattern of an increased 
burden shouldered by minority classes is also reversed - in 
all cases, the mcer multiple is lower than in the corresponding 
monolith model. This improvement was however paid for with 
an increased absolute error rate for the majority class. 

E. Effect of the Number of Shards and Slices 
The experiments conducted in the original SISA publication 

indicated that the number of shards and slices should be 
carefully chosen in order to ensure that the accuracy gap 
between monolithic and SISA model does not become too 
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Fig. 3. Effect of the number of shards on error rates for all classes with a 
given imbalance ratio, with annotations for the mean error rates. All SISA 
models have 3 slices per shard. 

TABLE ill 
RATES OF DETERIORATION BY NUMBER OF SHARDS 

Model 1:10 1:100 

monolith 2.7xmcer 14.4xmcer 
SISA ( 5 shards) 5.1 xmcer 40.5xmcer 

SISA (10 shards) 6.9xmcer 1 18.5 xmcer 
SISA (20 shards) 6.7xmcer 160.9 xmcer 

all SISA models have 3 slices 
mcer = majority class error rate 

* = maximum reached 

1:1000 
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Fig. 4. Effect of the number of slices on error rates for all classes with a 
given imbalance ratio, with annotations for the mean error rates. All SISA 
models have 5 shards. 

TABLE IV 
RATES OF DETERIORATION BY NUMBER OF SLICES 

Model 1:10 1:100 

monolith 2.7xmcer 14.4xmcer 
SISA (3 slices) 5.1 xmcer 40.5 xmcer 
SISA ( 6 slices) 5.0xmcer 29.7xmcer 

SISA (12 slices) 4.8xmcer 29.3xmcer 

all SISA models have 5 shards 
mcer = majority class error rate 

* = maximum reached 

1:1000 

196.3xmcer 
242.8 xmcer* 
227.0xmcer 
208. xmcer* 
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large. In a small ablation study, we evaluate how the impact 
on minority classes changes when the number of shards or the 
number of slices is increased while keeping the other fixed. 

We repeat the same experiment as before with 5, 10, and 20 
shards and 3 slices, as well as 5 shards and 3, 6, and 12 slices. 
The results for varying shard numbers are shown in Fig. 3 and 

Table ill, the results for varying slice numbers in Fig. 4 and 

Table IV. 
The results for the number of shards show a relation­

ship between an increasing number of shards and a more 
pronounced performance gap between majority and minority 

classes. Unless the error rate ceiling is reached, the rate of 

deterioration increases with the number of shards, except for 

the SISA model with 20 shards and the imbalance ratio of 
1 :  10, which remains almost unchanged. 

There seems to be no clear relationship between the number 

of slices and the performance of minority classes. These 
findings align with the results of the original SISA paper [5], 
where accuracy was also mainly dependent on the number of 

shards, but less so on the number of slices if the model is 
trained for enough epochs. 

IV. KNOWLEDGE OF PRIVACY RIGHTS IS 

NOT EVENLY DISTRIBUTED 

As mentioned in the introduction several legislations give 
people the right to request the deletion of their personal data. 

However, who is aware of and exerting this right is not evenly 

distributed among the population, as we will discuss in this 
section. 

As long as a service provider is able to estimate the 

likelihood of a given individual to submit a data deletion 
request with reasonable accuracy, sorting the training samples 

according to that likelihood will lead to an improvement in 

the average unlearning speedup by limiting the retraining to 

fewer shards and slices. Such estimates can be derived on 

a per-country level, as simulated by the original authors [5]. 
Their experiment was motivated by work published by Google 

[38], which showed differences of up to 1 : 10 in the number of 

URL deletion requests per capita for individual EU member 
states. But unlearning likelihood estimates can stem from any 

number of useful predictive features at the service provider's 

disposal. As many service providers have privacy settings that 
the user can change, the fact that the user changed those from 

the default settings may indicate an increased user concern 

about privacy. But also other general features such as age, 

socioeconomic status, gender, education, internet usage, the 

date of the last login, etc. may serve as useful predictors for 

the likelihood of an approaching deletion request. Large search 
engines and online social networks that earn money through 

targeted advertising have access to these features. 

A. Unlearning for the Young and Rich 
After the GDPR came into effect in 2018, the European 

Commission Directorate-General for Justice and Consumers 

commissioned a Eurobarometer survey [39] that set to explore 
the awareness of the newly introduced legislation in the EU, 
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Have you ever tried to change the privacy settings of your personal profile 
from the default settings on an online social network? 

by socioeconomic status by age 

Fig. 5. Responses in the Eurobarometer survey [39] to a question regarding 
privacy settings. Base: online social network users in the EU (N=l7,537). 

100 
80 

Have you heard of the right to have your data deleted and be forgotten? 

by difficulty paying bills 
by having ever changed 

privacy settings 

Fig. 6. Responses in the Eurobarometer survey [39] to a question regarding 
GDPR right awareness. Base: all respondents (N=27,524). 

including questions on data sharing and data protection in 

general as well as knowledge of the newly introduced rights. 
Likewise, Consumer Action and the Consumer Federation of 
America, two US non-profits, conducted a survey [40] that 

evaluated the awareness of and experience with the CCPA 
among California residents. Both surveys found considerable 

dependencies of awareness and exertion of deletion rights and 
socioeconomic status, age, education, previous privacy setting 

changes, internet usage, race, gender, and more. In the EU 

survey [39], the highest awareness of deletion rights recorded 
across all categories was among the subgroup of managers, 
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In the past year, have you asked a business whose website you have visited to 
delete the personal information it has col lected about you? 

by household income by age 
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Fig. 7. Responses in the Consumer Action/Consumer Federation of America 
survey [ 40] to a question regarding submitted deletion requests. Base: all 
respondents (N=l ,507). 

628 



629

with an awareness rate of 79%. The EU survey validates 

privacy setting changes as useful predictor for deletion right 

awareness and highlights disparities among which groups 
actually change those settings. Selected results from both 
studies are shown in Fig. 5-7. 

lf there are complex relationships between socioeconomic 
factors and unlearning likelihood, it is hard to imagine any 

classification scenario involving personal data in which the 
target variables are uncorrelated with those factors. In the 

medical domain being sick is positively correlated with age 

(and negatively with household wealth [41]), in the banking 

context creditworthiness is positively correlated with age and 

socioeconomic status, and even in the retail domain customer 

lifetime value shows a positive correlation with household 

income. 

When class label and unlearning likelihood are correlated 

and an adaptive SISA strategy is used, this can further amplify 
class imbalances in shards and slices. In the following ablation 

study we will evaluate the effect of class-correlated unlearning 

likelihood on model performance. 

B. Experimental Setup 
In the original SISA paper [5], the algorithm presented 

for distribution-aware sharding sorts all samples by their 

unlearning likelihood and then places them into shards un­
til the expected cumulative probability E(Xi) of that shard 

being unlearned reaches a threshold C. Then a new shard is 
created and filled with the remaining samples until it reaches 

the threshold again, which is repeated until no samples are 

left. This procedure accumulates high-likelihood samples into 

fewer shards that are smaller in size. While this does not result 

in a speedup for a single deletion request, as all shards are 

equally likely, it decreases the expected number of samples to 
be retrained for hatched requests. 

In this ablation study, we are however not interested in 

investigating the impact of different shard sizes, but the impact 
of different shard compositions that have been introduced 

through the sorting step. We will therefore evaluate the meth­

ods for distribution-aware sharding and slicing shown in Fig. 

1 .  In the fewer shards setting, samples are sorted by their 

unlearning likelihood and distributed into S shards according 

to their likelihood, and finally randomly assigned to R slices. 
In the later slices setting, the samples are first randomly split 

up into shards, but then placed in earlier or later slices based 

on their lower or higher unlearning likelihood. 

Both methods produce shards and slices of equal size 

but with different expected unlearning probabilities, which in 

return result in the intended speedup for multiple deletion 

requests. The absence of unequal shard and slice sizes allows 

us to measure the effects of the data composition, and not the 

shard size or aggregation method. 

For the experiments, we are modeling unlearning likelihood 

as a normally distributed variable with a given mean and stan­
dard deviation, where the mean for all minority classes is either 

one standard deviation higher or one standard deviation lower 
than the majority class. This results in a slightly higher or 
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lower concentration of minority-class samples in the respective 

slices or shards. SISA models with 5 shards and 3 slices are 

then trained in the same way as in the previous experiments 
without any mitigation method described in Section ill-B. 

Like before, we record error rates grouped by imbalance ratio, 
which this time also reflect the associated higher or lower 

average unlearning likelihood. 

In regular SISA training slices are unioned as the training 
progresses. For the first checkpoint of a given shard, we 

are just training on the samples in slice 1 .  For the second 

checkpoint, we are training on the samples in slice 1 U slice 
2, and so on. At the same time, the number of epochs is 

adjusted so that the total number of samples processed stays 
the same no matter which number of slices R was chosen. This 
means that samples from the first slice will be seen by the final 

model R times as often as samples from the last slice, which 
could put samples from the later slices at a disadvantage. To 

determine if this is the case we are also testing the later slices 
strategy with a variant of SISA where slices are not unioned as 
the training progresses and the number of epochs per slice is 

equal to the number of epochs in the monolith. This means that 

the total number of samples seen by each constituent model 
remains the same as for regular SISA, but each sample is seen 

exactly the same number of times. 

C. Results 
The results for the strategy where samples with a high 

unlearning likelihood are placed into fewer shards can be seen 
in Fig. 8, the results for the placement in later trained slices 

in Fig. 9 (regular SISA) and Fig. 10 (SISA w/o unioning). 

fewer shards sorting, SISA 

majority classes minority classes minority classes minority classes 
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Fig. 8 .  Results for adaptive assignment into fewer shards. Higher/lower 
likelihood refers to the likelihood of the minority classes. All models have 5 
shards and 3 slices. 

While the adaptive placement seems to have only a small 

positive effect on the error rates of the majority class, the 

performance of minority classes is consistently worse in the 
fewer shards setting. In the later slices setting, the performance 

of minority classes is consistently better when belonging to 

a minority class is associated with a lower-than-average un­
learning likelihood and consistently worse when the unlearning 

likelihood is higher. This relationship is reversed in the SISA 

variant where slices are not unioned as training progresses. 
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Fig. 9. Results of adaptive assignment into later slices. Higher/lower likeli­
hood refers to the likelihood of the minority classes. All models have 5 shards 
and 3 slices. 
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Fig. 10. Results of adaptive assignment into later slices for a SISA variant 
where slices are not unioned as training progresses and the number of epochs 
remains unadjusted. Higher/lower likelihood refers to the likelihood of the 
minority classes. All models have 5 shards and 3 slices. 

Here, having a higher unlearning likelihood is beneficial for 
minority classes, and having a lower unlearning likelihood 
decreases their performance. 

V. HOW DOES SISA AFFECT SUBGROUP FAIRNESS? 

In the previous experiments, we analyzed the impact of 
SISA on imbalanced classes, but an impact on the subgroup 
fairness of models is also conceivable. Models trained on 
datasets that contain only very few samples from a protected 
subgroup tend to perform worse on that subgroup. For exam­
ple, darker-skinned females have much higher error rates in 
commercially available gender classifiers [ 42], while publicly 
available facial datasets contain mostly white faces [42] . If 
SISA has a more detrimental impact on minority classes 
it could also be that it hurts the performance of minority 
subgroups more - simply because they make up a smaller 
portion of the dataset. 

Another issue may arise from correlations between sub­
group membership and unlearning likelihood. As discussed 
in Section IV-A, the likelihood of unlearning is not evenly 
distributed: the more upper class and the younger the person, 
the more likely they are privacy-aware. This gives rise to the 
risk of unfairness being introduced in a model by applying a 

biased function to predict unlearning likelihood. If different 
population subgroups are given different placements in shards 
and slices, prediction accuracies for those groups may be 
higher or lower than for others. 

A. Experimental Setup 
To determine the effect of SISA on population subgroups, 

we run experiments on a subset of the UTKFace [ 43] dataset, 
which contains facial images with labels for age, race, and 
gender. We train a young-old classifier on the dataset that 
determines whether a face belongs to the age group 24 - 37 
or 38 - 62. Our reduced training dataset is perfectly balanced, 
with 2700 white and 270 black faces per class. The imbalance 
ratio between the white and black subgroup is 1 :  10 and there 
is no correlation between race and class label. Our test set is 
balanced and contains 330 white and 330 black faces per class. 
Our classifier architecture is based on a ResNet-18 [36] and 
makes use of techniques for improved generalization including 
dropout and label smoothing. 

We evaluate our classifier across four different scenarios: 
A monolithic model, a SISA model with random sample 
placement, and two SISA models with adaptive placement in 
later slices. In the first adaptive model, we model black faces 
to have a mean unlearning likelihood one standard deviation 
below white faces. In the second adaptive model, we model 
old faces to have a mean unlearning likelihood one standard 
deviation below young faces. The direction of both correlations 
corresponds to the survey results from Section IV-A. We are 
recording the error rate for each model separately for each pro­
tected attribute: race and age. This allows us to measure how 
SISA behaves both when the protected attribute is completely 
uncorrelated with class membership but underrepresented, and 
when it is equivalent to class membership. Each experiment is 
repeated 5 times. All trained SISA models have 5 shards with 
3 slices each. 

B. Results 

The results can be seen in Fig. 1 1 .  The average error rate 
for black faces is considerably higher than the average error 
rate for white faces in the monolithic model. At the same time, 
the model consistently has much lower error rates for young 
faces across all runs, despite both classes being balanced, 
which likely represents a global optimum given the dataset 
and binary cross-entropy loss. Training the classifier as a SISA 
model increased the average error rate for white faces by 2% 
and the average error rate for black faces by 0.7%, suggesting 
no increased burden on the minority subgroup. A negative 
correlation between minority subgroup membership (race) and 
unlearning likelihood resulted in no noticeable changes to 
subgroup error rates as well. A negative correlation between 
the old age subgroup and therefore class membership did 
however result in extreme changes to the error rates, with the 
error rate of the old class improving to just 9.3%, and the 
error rate of the young class deteriorating to 46.7%, despite 
both classes still being balanced. The direction of change is in 
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line with the results from the previous experiments in Section 

IV. 
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Fig. 11. Age classification error rates for the protected attributes race and 
age, with annotations for the mean error rates. All SISA models have 5 shards 
with 3 slices each. 

VI. DISCUSSION 

The results of our first experiment show that the perfor­
mance gap that comes with using SISA is larger for minority 

classes than for majority classes. If we assume that this 
generalizes to other tasks, this introduces a dilemma: Is it more 
important to allow efficient unlearning or is it more important 

to have a high accuracy across all classes? 

A. The Limits of SISA 

The original SISA paper [5] highlighted the importance 

of the absolute number of samples per shard to achieving 

good generalization and model performance. We interpret our 
results as further evidence for this finding but extend the 

scope to the absolute numbers of samples per shard and 
class. The inability of both data-level as well as algorithm­
level methods (see Section ill-B) to alleviate the problem of 

increased deterioration rates for minority classes highlights 
how difficult it is to overcome the increased accuracy gap that 

SISA introduces. 
The fact that the deterioration rate in our experiments was 

closely related to the number of shards but not the number 

of slices suggests that the root cause of lower performance 
for SISA in general and the reason for the disadvantage for 

minority classes are the same. Hence, finding solutions for the 

problems of imbalanced classes with SISA may help improve 
the accuracy of SISA models in general, even when classes 

are balanced. 

In an apples-to-apples (in terms of retraining time) compar­

ison between SISA and the 1 I VS RUS baseline, the baseline 
outperformed SISA on all minority classes. The superiority 
of the baseline becomes more pronounced as the imbalance 

ratio rises. This means that as long as a slight decrease in 
majority class performance is acceptable, the performance of 

minority classes can be boosted considerably by using the 

baseline while preserving the same average-case retraining 
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speedup for individual unlearning requests (and yielding a 

higher speedup for hatched requests). At the same time, 

using the baseline reduces the worst-case retraining time by 
a factor of .JS, and reduces the best-case retraining time 

to 0. The lack of an ensembling step comes with further 
advantages: different learning tasks such as contrastive rep­

resentation learning, for which ensembling methods are less 

intuitive than simply summing class probabilities, are now 
possible too. Unfortunately, the experiments in the original 

SISA paper were only conducted in an apple-to-oranges way, 

where SISA performance was compared to a 1IS baseline 
with a different retraining time that puts the baseline at an 

artificial disadvantage. 

Another observation that can be made from our experiments 
is that the variance of majority class error rates seems to be 

increased when using RUS. A possible reason for this could 

be that important prototypical training samples were randomly 
removed from the majority classes. If the majority classes were 

not down-sampled randomly but strategically (e.g. using data 
pruning [44]) the average majority class performance could 

possibly be improved while preserving the beneficial speedup 

and class balancing effect. 
While the performance of SISA on imbalanced datasets 

could probably be improved incrementally by combining more 

algorithm-level methods or even by coming up with more 
elaborate ensembling methods, the more sensible option is 

likely choosing the 1 I VS RUS baseline instead. In fact, even 

a 1 IS RUS baseline, which is S times faster than regular 
SISA, compared favorably to the SISA minority class error 

rates when we evaluated it. The answer to whether SISA or 

another baseline yields better results depends therefore greatly 
on the dataset and is not as clear as the original SISA paper 

[5] likes to make it out. 
We were able to show that distribution-aware SISA models 

are in fact sensitive to correlations between class membership 

and unlearning likelihood. When minority class membership 
is negatively correlated with a high unlearning likelihood 

samples tend to be remembered better by the constituent 

models. The reason for this effect is likely that the samples 
from the earlier slices are seen more often, and the model has 

more chances to learn their features. In essence, the effect of 

presenting the minority class samples to the model more often 
during training is equivalent to ROS or assigning higher class 

costs during the training of the constituent models. 

The opposite relation is true when slices are not unioned 
during training. Here, a positive correlation between minority 

class membership and unlearning likelihood improved perfor­
mance. This reversed effect is likely caused by the model 

better remembering samples that it was fine-tuned on most 

recently. This variant can also be viewed as assigning lower 
class costs to minority classes at the beginning of the training 

and assigning higher class costs at the end of the training. 

Parallels can be drawn to dynamic curriculum learning [ 45], 
where a scheduler dynamically adapts the label distribution 
from imbalanced to balanced over time. Applying dynamic 

curriculum learning could possibly also further improve the 
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performance of our RUS baseline. In fact, the lack of unioning 

of slices even gives the model another slight speedup in 

retraining time, as the relationship between the number of 
slices being retrained and retraining time is linear in this 

variant. 

As long as the correlation between minority class mem­

bership only goes in only one direction the opposite effects 

of both variants allow us to always select whichever variant 

benefits the minority classes the most. 

B. A Potential Attack Vector 
In the context of distribution-aware SISA unlearning we also 

want to highlight a potential attack vector that has so far not 

been mentioned in the literature. While Marchant, Rubinstein 

and Alfeld [ 46] presented an attack on approximate machine 
unlearning methods that strategically places poisoned samples 

to incur the maximum possible retraining cost if their deletion 

is requested, the same might be possible for SISA. If an 
attacker is able to produce data points that the service provider 

will likely consider high or low unlearning likelihood samples, 

for example by creating user accounts in particular countries 

or with an appropriate age, such data points will be placed in 

specific locations in a distribution-aware SISA model. While 
this could obviously be used to maliciously increase retraining 

cost, the predictable placement of data points could also allow 

for more effective poisoning attacks on the model. 

Parallels of this attack vector can be drawn to data ordering 
attacks [47], where an adversary is able to skew the model 

towards a desired direction or prevent it from learning alto­

gether purely by manipulating the order in which samples are 
presented to a machine learning model during training. Even 

though our adversary would need to be able to insert novel 

data points as well, they could also exert some control over 

when those data points are seen by the model. Especially when 

classes are imbalanced and the absolute number of minority 

class samples is small, changes to the correlation of class 

label and unlearning likelihood can also be introduced easily 

by an adversary, and our experiments have shown that such 
correlations do have an effect on model performance. As we 

have not conducted experiments testing the effectiveness of 

the mentioned attack we leave the exploration of this attack 

vector to future research. 

C. Subgroups and Fairness 
The experiments in Section V showed no increased burden 

of SISA on minority subgroups without class correlation, 
both using random and adaptive placement of samples. In 

contrast, the effects of unlearning likelihood correlation with 

class labels on the same facial dataset were in line with the 
results from Section IV-A. 

We assume that the main reason for this is that both 

subgroups, black and white faces, benefit from the samples 

of the other subgroup. A classifier trained purely on white 

faces would likely perform better than random guessing on 

a test set with black faces. In contrast, a classifier trained 

without ever seeing an instance of a given class will likely 

never predict that class. Generally speaking, the error rate 

of a given class drops as the number of samples increases 

and follows a power law. If this relationship is causal for the 
increased burden of SISA on minority classes - the power 

law leads to a bigger increase in error rate as the number of 

samples you begin with gets lower - the relationship between 

sample numbers and SISA performance could change if the 

power law gets violated. As black and white faces share many 

features that correspond with age (e.g. wrinkles, grey hair, etc.) 

the effect of SISA sharding is likely reduced so much that it 

results in no significant difference in performance deterioration 

between both subgroups. Nonetheless, the error rate for the 

black subgroup remained higher than the error rate for the 

white subgroup in all models. 

At the same time, the sensitivity of the age subgroups to 

the adaptive placement of samples confirms the results from 

Section IV-A and shows that special care has to be taken when 

class membership is correlated with unlearning likelihood. 

Unfairness can be introduced into models not only by a pro­

tected subgroup comprising a minority of the training dataset. 

Many datasets produce unfair classifiers because subgroup 

membership is correlated with a positive or negative outcome. 
A small ablation study on the Adult [48] and COMPAS [49] 
datasets (see Appendix B) showed no significant impact of 

SISA training on traditional fairness metrics as well. 

D. The Role of the Dataset 

The larger the dataset, the larger the costs for retraining and 

the higher the importance of efficient methods for machine 

unlearning. Unfortunately, the EMNlST [30] dataset we used 

for our experiments can only be considered to be medium­

sized, and the down-sampled UTKFace dataset is even smaller 

with less than 6.000 training samples. As training an individual 

model never took more than two hours, no service provider 

would be willing to accept the lower performance of SISA 
in return for saving mere minutes of retraining time. Since 

large datasets might provide additional benefits for learning 

(a 1 : 1000 minority class in a 10,000,000 sample dataset still 
consists of 10,000 samples) the trade-off that service providers 

operating on a global scale face could be more favorable than 

suggested by our experiments. 

A short ablation study comparing the role of absolute minor­

ity class size and imbalance ratio (see Appendix C) did indeed 
show that as the dataset size increases, the performance of both 

majority and minority approaches the optimum asymptotically. 

However, absolute class size is not the only determining factor, 

and the imbalance ratio still has a major role to play in model 

performance. 

One of the goals of this study was to analyze the impact 

on minority classes without the introduction of additional 

biases through the dataset. We were able to demonstrate the 

effects on minority classes using a synthetically imbalanced 
dataset without additional confounds. Whenever datasets with 

naturally occurring imbalances are used for training additional 

confounds may exist, and special care should be taken to 
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determine which effect is responsible for reduced model 

performance. 

VII. CONCLUSION 

SISA [5] (Sharded, Isolated, Sliced, and Aggregated) train­

ing is a framework that allows efficient machine unlearning. 

In this paper, we analyzed the impacts of SISA on the per­

formance of imbalanced classes. We were able to demonstrate 

that the difference in error rates between majority and minority 

classes increased with SISA, even for small imbalance ratios 

of 1 : 10. The increase in performance difference between the 

majority and minority classes mainly depends on the number 

of shards of the model. Both data-level and algorithm-level 

methods for learning with class imbalance improved minority 

class accuracy. Yet, the problem of unequal degradation rates 

persists when applying those methods. 
When the performance of minority classes is important, 

simply down-sampling the dataset into a more balanced single 

shard of size 1/ VB yields much better results than applying 

SISA while preserving the same average retraining speedup. 

We were able to show that SISA does not always win over a 

smaller model without ensembling and that the makeup of the 

dataset should play an important role when deciding on which 

machine unlearning method to choose. 
In addition, we were able to demonstrate that SISA models 

are sensitive to correlations between class membership and 

unlearning likelihood. While this relationship can be beneficial 

to the performance of minority classes, the opposite can be 

true as well. We point out a potential attack vector that this 

relationship could open up to adversaries that aim to reduce 

the model performance. As long as minority classes are only 

correlated in one direction, a suitable SISA strategy can be 

selected that improves their performance. 
The increased burden of SISA seems to depend largely on 

the class distribution, with no significant effect on minority 

subgroups or traditional fairness metrics on common fairness 

datasets. 
Our work illustrates the importance of researching the 

side effects that are associated with machine unlearning and 

highlights the need for a detailed observation of model per­

formance that goes beyond measuring average accuracy. 
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APPENDIX A 
IMPACT OF DATA AUGMENTATION 

Data augmentation [50] is a method to increase the gen­
eralization ability of neural networks, especially when little 
training data is available. To achieve this, the data used for 
training is modified in a way that preserves class membership 
in the task domain, thus increasing the sample density in the 
feature space close to the original sample. The augmented 
samples are dependent on the existing samples and thus the 
distribution of samples in feature space is different from an 
i.i.d. dataset that simply had a bigger size to begin with. 

Data augmentation has been used for imbalanced learning, 
for some examples see [51], [52]. In this ablation study, we are 

using a simple augmentation approach to analyze whether data 
augmentation has a beneficial effect on the increased burden 
on minority classes that SISA entails. In the settings where 
augmentation is used, we apply a random rotation between +20 
and -20 degrees to every sample each time it is retrieved, which 
is considered a default choice that preserves class membership 
for digit recognition tasks [50]. We evaluate augmentation 
in combination with ROS, as is usually done when using 
data augmentation for imbalanced classes. This allows the 
minority class to benefit sufficiently from the augmentations 
and prevents underfitting. 

The results can be seen in Fig. 12, with the corresponding 
deterioration rates in Table V. Data augmentation is able to 
improve the performance of the models across all classes. 
However, the monolith model benefits much more from the 
augmentation than the SISA model. For example, the error 
rate of the 1 :  10 and 1 :  100 minority classes in the monolith 
dropped by more than half, but only by 29% and 40% in the 
SISA model. This is also reflected in the deterioration rates in 
Table V. While going from a 1 1 . 1  xmcer (monolith + ROS) 
to a 22.6xmcer (SISA + ROS) means that the deterioration 
in the SISA model was approximately twice as high as in the 
monolith, the same comparison using data augmentation from 
5.2xmcer (monolith + ROS + Aug.) to 14.5 xmcer (SISA + 
ROS + Aug.) means the deterioration is now three times as 
high. The observation that the difference in deterioration rates 
between monolith and SISA model gets more extreme holds 
for the 1 :  10 and 1 :  1000 minority classes as well. 

While data augmentation improves the ability of the models 
to generalize it does not alleviate the increased burden on mi­
nority classes that SISA introduces. However, as absolute error 
rates improve when incorporating data augmentation, it makes 
likely sense to be integrated alongside other generalization 
methods in the model. 

APPENDIX B 
IMPACT OF SISA ON TRADITIONAL FAIRNESS METRICS 

As an ablation study, we evaluate the fairness impact of 
SISA on commonly used fairness datasets. For our experi­
ments, we selected two datasets for our experiments. 

The Adult dataset from the UCI Machine Learning Repos­
itory [ 48] is used to predict whether an adult earns more than 
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Fig. 12. Error rates for all classes with a given imbalance ratio for a mono­
lithic and SISA model with ROS, both with and without data augmentation. 

TABLE V 
RATES OF DETERIORATION USING ROS OR ROS AND DATA 

AUGMENTATION 

Model 1:10 1:100 1:1000 

monolith (ROS) 2.7xmcer 11 .1 xmcer 48.9xmcer 
SISA (ROS) 4.1xmcer 22.6xmcer 132.7xmcer 

monolith (ROS + Aug.) 1.4xmcer 5.2 xmcer 28.0 xmcer 
SISA (ROS + Aug.) 3.2 xmcer 14.5xmcer 113.0xmcer 

mcer = majority class error rate 

$50.000. Variables include numerical features such as age and 
categorical features such as country of origin. 

The COMPAS dataset [ 49] contains records used by the 
commercial COMPAS (Correctional Offender Management 
Profiling for Alternative Sanctions) algorithm, which was used 
by the American justice system to predict 2-year recidivism 
of criminal defendants. Analysis has shown that the COMPAS 
algorithm is strongly biased [53]. 

In our experiments, we train a 4-layer DNN using the full 
feature set of each dataset including protected attributes. This 
model is implemented as a monolithic baseline as well as a 
SISA model with 5 shards and 3 slices. We measure accuracy 
and commonly used fairness metrics using the AI Fairness 360 
framework [54]. 

In the following definitions, we use the variable a for the 
protected attribute, which can take the values p for a privileged 
and u for an unprivileged subgroup. F P R stands for false 
positive rate, T P R for true positive rate, and y for the output 
of the model. With this notion, the metrics are defined as 
follows: 

The average odds difference [54] is defined in Eq. 1 and 
measures the average difference in false positive rates and true 
positive rates between unprivileged and privileged subgroups. 

(FPR,. - FPRp) + (TPR,. - TPRp) 
2 

(1) 
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In a similar fashion, the equal opportunity difference [54] 
measures the difference in true positive rates and is defined in 

Eq. 2. 

TPR,. - TPRp (2) 

The statistical parity difference [54] measures the selec­

tion rates for a positive outcome and is defined in Eq. 3. 

P(y = positivela = p) - P(y = negativela = u) (3) 

For all three metrics, equality can be assumed if the metric 

yields a value of 0. A lower value implies benefits for the 
privileged class while a higher value implies benefits for the 

unprivileged class. 

For the Adult dataset, we consider the protected attribute 
to be sex with p = male, u = female, and for COMPAS, we 

consider the protected attribute to be race, with p = white, 
u = black. 

The results of the experiment can be seen in Fig. 13 and 

14. For both datasets, the monolith model as well as the SISA 

model treat the privileged subclass more beneficial. However, 

we can see neither a clear improvement nor regression in 

regards to the fairness metrics between both models. 
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Fig. 13. Comparison of accuracy and several fairness metrics between the 
monolithic and SISA model on the Adult dataset. 

APPENDIX C 

ABSOLUTE SIZE VS. IMBALANCE RATIO 

When dealing with imbalanced datasets a general question 

arises: Is the performance of a minority class lower because 

the absolute number of samples for that specific class is low, or 

because it represents a smaller relative portion of the dataset? 

In the first case, the performance of the minority class should 

be independent of the size of other classes in the dataset, while 

in the second case the absolute number of samples should be 

irrelevant. 
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Fig. 14. Comparison of accuracy and several fairness metrics between the 
monolithic and SISA model on the COMPAS dataset. 

In this ablation experiment, we modify the absolute and 
relative minority class sizes in our imbalanced EMNIST 

dataset such that the absolute class size stays fixed but the 

imbalance ratio changes and such that the imbalance ratio 

stays fixed but the class size changes. In each setting, there 

are always 9 majority classes and 1 minority class. We train 

10 SISA models (5 shards, 3 slices) in the same way as in the 

main experiments on each dataset (see Section Ill-C). 

In the first setting, the imbalance ratio stays fixed at 1 : 10, 

but the minority class size ranges between 2400 and 240 

samples. The results can be seen in Fig. 15. In the second 

setting, the minority class size stays fixed at 240 samples, but 

the imbalance ratio varies between 1 : 10 and 1 : 100. The results 
are shown in Fig. 16. 
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Fig. 15. Error rates for SISA models with 5 shards and 3 slices and varying 
dataset composition. All datasets have a class imbalance of 1 :10. For the 
majority class group n=90, for the minority class group n=lO. 
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Fig. 16. Error rates for SISA models with 5 shards and 3 slices and varying 
dataset composition. All datasets have an absolute minority class size of 240 
samples. For the majority class group n=90, for the minority class group n=lO. 

The results show that the final performance depends on both 

absolute size and imbalance ratio. If the imbalance ratio rises, 

the performance of the minority classes decreases, even if their 

absolute size stays the same. The performance of both majority 

and minority class improves if the dataset size increases while 

keeping the imbalance ratio the same. At the same time, 

performance does not depend linearly on absolute class size 
but follows a power law. For example, halving the number of 

minority samples from 2400 to 1200 increased the error rate 

by 1 .02%/42% (absolute/relative), but halving them from 1200 

to 600 samples increased it by 2.38%/69% (absolute/relative). 

This pattern of slowly diminishing returns as the absolute 

dataset size increases makes sense, as error rates can never 

be lower than 0% and will improve asymptotically instead of 

linearly. However, as SISA sharding reduces the absolute size 
of all classes by a constant factor of S no matter their size, 

smaller classes will suffer a larger performance decrease if this 

relationship generalizes across all datasets and dataset sizes. 
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